

Welcome to ChemCoord’s documentation!

Features

	You can use it as a python module. [https://xkcd.com/353/]

	It reliably converts from Cartesian space (xyz-files) to internal coordinates (zmat-files)
without introducing dummy atoms. Even in the case of linearity.

	The created zmatrix is not only a transformation to internal coordinates, it is a “chemical” zmatrix.
By chemical I mean, that e.g. distances are along bonds or dihedrals are defined as you draw them in chemical textbooks.

	It derived from my own work and I heavily use it during the day.
So all functions are tested and tailored around the workflow in theoretical chemistry.

	The classes are safe to inherit from and you can easily costumize it for the needs of your project.

Contents

	Installation Guide
	Unix

	Windows

	Introduction and General Structure
	What you need to know

	Internal representation of Data

	Main classes of this module

	Tutorial

	Documentation
	Cartesian coordinates

	Utilities for euclidean geometry

	Functions for internal coordinates

	References

	Bugreports and development.

	Previous Contribution

	License

Installation Guide

You need a working python (both python2 and 3) installation together with some standard modules.
You can use for example the anaconda3 installer [https://www.continuum.io/downloads/].

The advantage of the anaconda3 installer is that you get a lot of additional modules and programs,
that make it really easy to work with python.
For example Ipython [http://ipython.org/] and the jupyter notebooks [http://jupyter.org/].
I highly recommend to use those.

Unix

Just type in your terminal:

pip install chemcoord

This should also resolve all dependencies automatically.

Windows

I tested neither installation nor running the module on windows.
As far as I know it should work as well if you use the pip manager.
If you get it installed and running, please report it on the Github page.

Introduction and General Structure

What you need to know

I assume that you know python [https://docs.python.org/3/tutorial/index.html].

You can use chemcoord without knowing Pandas, but it gives you a great advantage.
If you invest 1h for their tutorial [http://pandas.pydata.org/pandas-docs/stable/tutorials.html]
you will greatly increase your productivity in scientific data analysis.

It also helps to know about numpy [https://docs.scipy.org/doc/numpy-dev/user/quickstart.html].

Internal representation of Data

This module uses pandas DataFrames to represent cartesian and internal coordinates.
(I will refer to them in lab slang as xyz and zmat)

The xyz_frame has at least four columns ['atom', 'x', 'y', 'z'].

The zmat_frame has at least seven columns ['atom', 'bond_with', 'bond', 'angle_with', 'angle', 'dihedral_with', 'dihedral'].

Since they are normal pandas DataFrames you can do everything with them as long as you respect this structure.
This means it is possible to append e.g. a column for the masses of each atom.
Besides you can use all the capabilities of pandas.

If you want for example to get only the oxygen atoms of a xyz_frame you can use boolean slicing:

xyz_frame[xyz_frame['atom'] == 'O']

Main classes of this module

The “working horses” of this module are the Cartesian and the Zmat class.
The have the methods to operate on their coordinates.

An methods of an instance of the Cartesian class usually return new instances of Cartesian.
Besides all methods are sideeffect free unless otherwise stated.

Let’s assume you have a molecule1 and you want to cut a sphere around the origin which gives you molecule2:

molecule2 = molecule1.cutsphere()

If you try this, you will see that:

	molecule2 is a Cartesian instance.

	molecule1 remains unchanged.

Tutorial

Just follow the link to the
Example notebook [http://nbviewer.jupyter.org/github/mcocdawc/chemcoord/blob/v1.2.0/Tutorial/Tutorial.ipynb].
If you want to have an interactive session, you have to download and open it with jupyter.

Documentation

Contents:

	Cartesian coordinates

	Utilities for euclidean geometry

	Functions for internal coordinates

Cartesian coordinates

	Cartesian(init)
	The main class for dealing with cartesian Coordinates.

	read_xyz(inputfile[,

 Cartesian

Cartesian

	
class chemcoord.xyz_functions.Cartesian(init)

	The main class for dealing with cartesian Coordinates.

Chemical Methods

	get_bonds([modified_properties,

 get_bonds

get_bonds

	
Cartesian.get_bonds(modified_properties=None, maximum_edge_length=25, difference_edge=6, use_valency=False, use_lookup=False, set_lookup=True, divide_et_impera=True, atomic_radius_data='atomic_radius_cc')

	Returns a dictionary representing the bonds.

Warning

This function is not sideeffect free, since it
assigns the output to a variable self.__bond_dic if
set_lookup is True (which is the default). This is
necessary for performance reasons.

	The Cartesian().get_bonds() method will use or not use a lookup

	depending on use_lookup. Greatly increases performance if
True, but could introduce bugs in certain situations.

Just imagine a situation where the Cartesian().frame is
changed manually. If you apply lateron a method e.g. to_zmat()
that makes use of get_bonds() the dictionary of the bonds
may not represent the actual situation anymore.

You have two possibilities to cope with this problem.
Either you just re-execute get_bonds on your specific instance,
or you change the internally_use_lookup option in the settings
submodule. Please note that the internal use of the lookup variable
greatly improves performance.

	Parameters:	
	modified_properties (dic) – If you want to change the van der
Vaals radius or valency of one or more specific atoms, pass a
dictionary that looks like:

modified_properties = {index1 :
 {'atomic_radius' : 1.5, 'valency' : 8}, ...}

For global changes use the constants.py module.

	maximum_edge_length (float) – Maximum length of one edge of a

	if divide_et_impera is True. (cuboid) –

	difference_edge (float) –

	use_valency (bool) – If True atoms can’t have more bonds than
their valency. This means that the bonds, exceeding the number
of valency, with lowest overlap will be cut, although the
van der Waals radii overlap.

	use_lookup (bool) –

	set_lookup (bool) –

	divide_et_impera (bool) – Since the calculation of overlaps or
distances between atoms scale with [image: O(n^2)], it is
recommended to split the molecule in smaller cuboids and
calculate the bonds in each cuboid. The scaling becomes
then [image: O(n\log(n))]. This approach can lead to problems
if use_valency is True. Bonds from one cuboid to
another can not be counted for the valency.. This means that
in certain situations some atoms can be oversaturated, although
use_valency is True.

	atomic_radius_data (str) – Defines which column of
constants.elements is used. The default is
atomic_radius_cc and can be changed with
settings.atomic_radius_data. Compare with
add_data().

	Returns:	Dictionary mapping from an atom index to the indices of atoms
bonded to.

	Return type:	dict

 to_zmat

to_zmat

	
Cartesian.to_zmat(buildlist=None, fragment_list=None, check_linearity=True)

	Transform to internal coordinates.

	Transforming to internal coordinates involves basically three

	steps:

	Define an order of how to build.

	
	Check for problematic local linearity. In this algorithm an

	angle with 170 < angle < 10 is assumed to be linear.
This is not the mathematical definition, but makes it safer
against “floating point noise”

	
	Calculate the bond lengths, angles and dihedrals using the

	references defined in step 1 and 2.

In the first two steps a so called buildlist is created.
This is basically a np.array of shape (n_atoms, 4) and

integer type.

	The four columns are ``[‘own_index’, ‘bond_with’, ‘angle_with’,

	‘dihedral_with’]``.

	This means that usually the upper right triangle can be any

	number, because for example the first atom has no other
atom as reference.

	It is important to know, that getting the buildlist is a very

	costly step since the algoritym tries to make some guesses
based on the connectivity to create a “chemical” zmatrix.

	If you create several zmatrices based on the same references

	you can save the buildlist of a zmatrix with
Zmat.build_list().

	If you then pass the buildlist as argument to to_zmat,

	then the algorithm directly starts with step 3.

Another thing is that you can specify fragments.
For this purpose the function Cartesian.get_fragment()

is quite handy.

An element of fragment_list looks like:

(fragment, connections)

	Fragment is a Cartesian instance and connections is a

	(3, 4) numpy integer array, that defines how the
fragment is connected to the molecule.

	Parameters:	
	buildlist (np.array) –

	fragment_list (list) –

	check_linearity (bool) –

	Returns:	A new instance of Zmat.

	Return type:	Zmat

 location

location

	
Cartesian.location(indexlist=None)

	Returns the location of an atom.

You can pass an indexlist or an index.

	Parameters:	
	frame (pd.dataframe) –

	indexlist (list) – If indexlist is None, the complete index
is used.

	Returns:	A matrix of 3D rowvectors of the location of the
atoms specified by indexlist. In the case of one index
given a 3D vector is returned one index.

	Return type:	np.array

 bond_lengths

bond_lengths

	
Cartesian.bond_lengths(buildlist, start_row=0)

	Return the distances between given atoms.

	In order to know more about the buildlist, go to

	to_zmat().

	Parameters:	
	buildlist (np.array) –

	start_row (int) –

	Returns:	
	Vector of the distances between the first and second

	atom of every entry in the buildlist.

	Return type:	list

 angle_degrees

angle_degrees

	
Cartesian.angle_degrees(buildlist, start_row=0)

	Return the angles between given atoms.

In order to know more about the buildlist, go to to_zmat().

	Parameters:	
	buildlist (list) –

	start_row (int) –

	Returns:	
	List of the angle between the first, second and

	third atom of every entry in the buildlist.

	Return type:	list

 dihedral_degrees

dihedral_degrees

	
Cartesian.dihedral_degrees(buildlist, start_row=0)

	Return the angles between given atoms.

In order to know more about the buildlist, go to to_zmat().

	Parameters:	
	buildlist (list) –

	start_row (int) –

	Returns:	
	List of the dihedral between the first, second,

	third and fourth atom of every entry in the buildlist.

	Return type:	list

 move

move

	
Cartesian.move(vector=[0, 0, 0], matrix=array([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]]), indices=None, copy=False)

	Move a Cartesian.

The Cartesian is first rotated, mirrored... by the matrix
and afterwards translated by the vector

	Parameters:	
	vector (np.array) – default is np.zeros(3)

	matrix (np.array) – default is np.identity(3)

	indices (list) – Indices to be moved.

	copy (bool) – Atoms are copied or translated to the new location.

	Returns:	

	Return type:	Cartesian

 basistransform

basistransform

	
Cartesian.basistransform(new_basis, old_basis=array([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]]), rotate_only=True)

	Transforms the frame to a new basis.

	This function transforms the cartesian coordinates from an

	old basis to a new one. Please note that old_basis and
new_basis are supposed to have full Rank and consist of
three linear independent vectors. If rotate_only is True,
it is asserted, that both bases are orthonormal and right
handed. Besides all involved matrices are transposed
instead of inverted.

	In some applications this may require the function

	utilities.orthonormalize() as a previous step.

	Parameters:	
	old_basis (np.array) –

	new_basis (np.array) –

	rotate_only (bool) –

	Returns:	The transformed molecule.

	Return type:	Cartesian

 add_data

add_data

	
Cartesian.add_data(list_of_columns=None, inplace=False)

	Adds a column with the requested data.

	If you want to see for example the mass, the colormap used in

	jmol and the block of the element, just use:

['mass', 'jmol_color', 'block']

	The underlying pd.DataFrame can be accessed with

	constants.elements.

To see all available keys use constants.elements.info().

	The data comes from the module `mendeleev

	<http://mendeleev.readthedocs.org/en/latest/>`_ written
by Lukasz Mentel.

Please note that I added three columns to the mendeleev data:

['atomic_radius_cc', 'atomic_radius_gv', 'gv_color',
 'valency']

	The atomic_radius_cc is used by default by this module

	for determining bond lengths.

	The three others are taken from the MOLCAS grid viewer written

	by Valera Veryazov.

	Parameters:	
	list_of_columns (str) – You can pass also just one value.
E.g. 'mass' is equivalent to ['mass']. If
list_of_columns is None all available data
is returned.

	inplace (bool) –

	Returns:	

	Return type:	Cartesian

 total_mass

total_mass

	
Cartesian.total_mass()

	Returns the total mass in g/mol.

	Parameters:	None –

	Returns:	

	Return type:	float

 barycenter

barycenter

	
Cartesian.barycenter()

	Returns the mass weighted average location.

	Parameters:	None –

	Returns:	

	Return type:	np.array

 inertia

inertia

	
Cartesian.inertia()

	
	Calculates the inertia tensor and transforms along

	rotation axes.

	This function calculates the inertia tensor and returns

	a 4-tuple.

	Parameters:	None –

	Returns:	The returned dictionary has four possible keys:transformed_Cartesian:
A frame that is transformed to the basis spanned by

the eigenvectors of the inertia tensor. The x-axis
is the axis with the lowest inertia moment, the
z-axis the one with the highest. Contains also a
column for the mass

diag_inertia_tensor:
A vector containing the sorted inertia moments after

diagonalization.

inertia_tensor:
The inertia tensor in the old basis.

eigenvectors:
The eigenvectors of the inertia tensor in the old basis.

	Return type:	dict

 topologic_center

topologic_center

	
Cartesian.topologic_center()

	Returns the average location.

	Parameters:	None –

	Returns:	

	Return type:	np.array

 cutcuboid

cutcuboid

	
Cartesian.cutcuboid(a=20, b=None, c=None, origin=[0, 0, 0], outside_sliced=True, preserve_bonds=False)

	Cuts a cuboid specified by edge and radius.

	Parameters:	
	a (float) – Value of the a edge.

	b (float) – Value of the b edge. Takes value of a if None.

	c (float) – Value of the c edge. Takes value of a if None.

	origin (list) – Please note that you can also pass an
integer. In this case it is interpreted as the index
of the atom which is taken as origin.

	outside_sliced (bool) – Atoms outside/inside the sphere are
cut out.

	preserve_bonds (bool) – Do not cut covalent bonds.

	Returns:	

	Return type:	Cartesian

 cutsphere

cutsphere

	
Cartesian.cutsphere(radius=15.0, origin=[0.0, 0.0, 0.0], outside_sliced=True, preserve_bonds=False)

	Cuts a sphere specified by origin and radius.

	Parameters:	
	radius (float) –

	origin (list) – Please note that you can also pass an
integer. In this case it is interpreted as the
index of the atom which is taken as origin.

	outside_sliced (bool) – Atoms outside/inside the sphere
are cut out.

	preserve_bonds (bool) – Do not cut covalent bonds.

	Returns:	

	Return type:	Cartesian

 connected_to

connected_to

	
Cartesian.connected_to(index_of_atom, exclude=None, give_only_index=False, follow_bonds=None)

	
	Returns a Cartesian of atoms connected to the specified

	one.

Connected means that a path along covalent bonds exists.

	Parameters:	
	index_of_atom (int) –

	exclude (list) – Indices in this list are omitted.

	give_only_index (bool) – If True a set of indices is
returned. Otherwise a new Cartesian instance.

	follow_bonds (int) – This option determines how many
branches the algorithm follows. If None it stops
after reaching the end in every branch. If you have a
single molecule this usually means, that the whole
molecule is recovered.

	Returns:	A set of indices or a new Cartesian instance.

 distance_to

distance_to

	
Cartesian.distance_to(origin=[0, 0, 0], indices_of_other_atoms=None, sort=False)

	Returns a Cartesian with a column for the distance from origin.

 get_fragment

get_fragment

	
Cartesian.get_fragment(list_of_indextuples, give_only_index=False)

	Get the indices of the atoms in a fragment.

	The list_of_indextuples contains all bondings from the

	molecule to the fragment. [(1,3), (2,4)] means
for example that the fragment is connected over two
bonds. The first bond is from atom 1 in the molecule
to atom 3 in the fragment. The second bond is from atom
2 in the molecule to atom 4 in the fragment.

	Parameters:	
	list_of_indextuples (list) –

	give_only_index (bool) – If True a set of indices
is returned. Otherwise a new Cartesian instance.

	Returns:	A set of indices or a new Cartesian instance.

 fragmentate

fragmentate

	
Cartesian.fragmentate(give_only_index=False)

	Get the indices of non bonded parts in the molecule.

	Parameters:	give_only_index (bool) – If True a set of indices is returned.
Otherwise a new Cartesian instance.

	Returns:	A list of sets of indices or new Cartesian instances.

	Return type:	list

 make_similar

make_similar

	
Cartesian.make_similar(Cartesian2, follow_bonds=4, prealign=True)

	Similarizes two Cartesians.

	Returns a reindexed copy of Cartesian2 that minimizes the

	distance for each atom in the same chemical environemt
from self to Cartesian2.

	Read more about the definition of the chemical environment in

	Cartesian.partition_chem_env()

Warning

	Please check the result with e.g.

	Cartesian.move_to()

	It is probably necessary to use the function

	Cartesian.change_numbering().

	Parameters:	
	Cartesian2 (Cartesian) –

	max_follow_bonds (int) –

	prealign (bool) – The method Cartesian.align()
is applied before reindexing.

	Returns:	
	Aligned copy of self and aligned + reindexed

	version of Cartesian2

	Return type:	tuple

 align

align

	
Cartesian.align(Cartesian2, ignore_hydrogens=False)

	Aligns two Cartesians.

	Searches for the optimal rotation matrix that minimizes

	the RMSD (root mean squared deviation) of self to
Cartesian2.

	Returns a tuple of copies of self and Cartesian2 where

	both are centered around their topologic center and
Cartesian2 is aligned along self.

	Uses the Kabsch algorithm implemented with

	utilities.kabsch()

	Parameters:	
	Cartesian2 (Cartesian) –

	ignore_hydrogens (bool) – Hydrogens are ignored for the
RMSD.

	Returns:	

	Return type:	tuple

 change_numbering

change_numbering

	
Cartesian.change_numbering(rename_dict, inplace=False)

	Returns the reindexed version of Cartesian.

	Parameters:	rename_dict (dict) – A dictionary mapping integers on integers.

	Returns:	A renamed copy according to the dictionary passed.

	Return type:	Cartesian

 move_to

move_to

	
Cartesian.move_to(Cartesian2, step=5, extrapolate=(0, 0))

	
	Returns list of Cartesians for the movement from

	self to Cartesian2.

	Parameters:	
	Cartesian2 (Cartesian) –

	step (int) –

	extrapolate (tuple) –

	Returns:	
	The list contains self as first and Cartesian2

	as last element.

The number of intermediate frames is defined by step.
Please note, that for this reason: len(list) = (step + 1).
The numbers in extrapolate define how many frames are

appended to the left and right of the list continuing
the movement.

	Return type:	list

 partition_chem_env

partition_chem_env

	
Cartesian.partition_chem_env(follow_bonds=4)

	
	This function partitions the molecule into subsets of the

	same chemical environment.

	A chemical environment is specified by the number of

	surrounding atoms of a certain kind around an atom with a
certain atomic number represented by a tuple of a string
and a frozenset of tuples.

	The follow_bonds option determines how many branches the

	algorithm follows to determine the chemical environment.

Example:
A carbon atom in ethane has bonds with three hydrogen (atomic

number 1) and one carbon atom (atomic number 6).

	If follow_bonds=1 these are the only atoms we are

	interested in and the chemical environment is:

('C', frozenset([('H', 3), ('C', 1)]))

	If follow_bonds=2 we follow every atom in the chemical

	enviromment of follow_bonds=1 to their direct neighbours.

In the case of ethane this gives:

('C', frozenset([('H', 6), ('C', 1)]))

In the special case of ethane this is the whole molecule;
in other cases you can apply this operation recursively and

stop after follow_bonds or after reaching the end of
branches.

	Parameters:	follow_bonds (int) –

	Returns:	The output will look like this:{ (element_symbol, frozenset([tuples])) :
 set([indices]) }

A dictionary mapping from a chemical environment to
 the set of indices of atoms in this environment.

	Return type:	dict

 __init__

__init__

	
Cartesian.__init__(init)

	How to initialize a Cartesian instance.

	Parameters:	frame (pd.DataFrame) – A Dataframe with at least the
columns ['atom', 'x', 'y', 'z'].
Where 'atom' is a string for the elementsymbol.

	Returns:	A new cartesian instance.

	Return type:	Cartesian

 index

index

	
Cartesian.index

	Returns the index.

Assigning a value to it changes the index.

 columns

columns

	
Cartesian.columns

	Returns the columns.

Assigning a value to it changes the columns.

 replace

replace

	
Cartesian.replace(to_replace=None, value=None, inplace=False, limit=None, regex=False, method='pad', axis=None)

	Replace values given in ‘to_replace’ with ‘value’.

The description is taken from the pandas project.

	Parameters:	
	to_replace (str, regex, list, dict, Series, numeric, or None) –
	str or regex:

	str: string exactly matching to_replace will be replaced
with value

	regex: regexs matching to_replace will be replaced with
value

	list of str, regex, or numeric:

	First, if to_replace and value are both lists, they
must be the same length.

	Second, if regex=True then all of the strings in both
lists will be interpreted as regexs otherwise they will match
directly. This doesn’t matter much for value since there
are only a few possible substitution regexes you can use.

	str and regex rules apply as above.

	dict:

	Nested dictionaries, e.g., {‘a’: {‘b’: nan}}, are read as
follows: look in column ‘a’ for the value ‘b’ and replace it
with nan. You can nest regular expressions as well. Note that
column names (the top-level dictionary keys in a nested
dictionary) cannot be regular expressions.

	Keys map to column names and values map to substitution
values. You can treat this as a special case of passing two
lists except that you are specifying the column to search in.

	None:

	This means that the regex argument must be a string,
compiled regular expression, or list, dict, ndarray or Series
of such elements. If value is also None then this
must be a nested dictionary or Series.

See the examples section for examples of each of these.

	value (scalar, dict, list, str, regex, default None) – Value to use to fill holes (e.g. 0), alternately a dict of values
specifying which value to use for each column (columns not in the
dict will not be filled). Regular expressions, strings and lists or
dicts of such objects are also allowed.

	inplace (boolean, default False) – If True, in place. Note: this will modify any
other views on this object (e.g. a column form a DataFrame).
Returns the caller if this is True.

	limit (int, default None) – Maximum size gap to forward or backward fill

	regex (bool or same types as to_replace, default False) – Whether to interpret to_replace and/or value as regular
expressions. If this is True then to_replace must be a
string. Otherwise, to_replace must be None because this
parameter will be interpreted as a regular expression or a list,
dict, or array of regular expressions.

	method (string, optional, {'pad', 'ffill', 'bfill'}) – The method to use when for replacement, when to_replace is a
list.

	Returns:	filled

	Return type:	Cartesian

	Raises:	
	AssertionError – * If regex is not a bool and to_replace is not None.

	
	TypeError – * If to_replace is a dict and value is not a list,

	dict, ndarray, or Series

	If to_replace is None and regex is not compilable into a
regular expression or is a list, dict, ndarray, or Series.

	
	ValueError – * If to_replace and value are list s or ndarray s, but

	they are not the same length.

Notes

	Regex substitution is performed under the hood with re.sub. The
rules for substitution for re.sub are the same.

	Regular expressions will only substitute on strings, meaning you
cannot provide, for example, a regular expression matching floating
point numbers and expect the columns in your frame that have a
numeric dtype to be matched. However, if those floating point numbers
are strings, then you can do this.

	This method has a lot of options. You are encouraged to experiment
and play with this method to gain intuition about how it works.

 sort_index

sort_index

	
Cartesian.sort_index(axis=0, level=None, ascending=True, inplace=False, kind='quicksort', na_position='last', sort_remaining=True, by=None)

	Sort object by labels (along an axis)

The description is taken from the pandas project.

	Parameters:	
	axis (index, columns to direct sorting) –

	level (int or level name or list of ints or list of level names) – if not None, sort on values in specified index level(s)

	ascending (boolean, default True) – Sort ascending vs. descending

	inplace (bool) – if True, perform operation in-place

	kind ({quicksort, mergesort, heapsort}) – Choice of sorting algorithm. See also ndarray.np.sort for more
information. mergesort is the only stable algorithm. For
DataFrames, this option is only applied when sorting on a single
column or label.

	na_position ({'first', 'last'}) – first puts NaNs at the beginning, last puts NaNs at the end

	sort_remaining (bool) – if true and sorting by level and index is multilevel, sort by other
levels too (in order) after sorting by specified level

	Returns:	sorted_obj

	Return type:	Cartesian

 set_index

set_index

	
Cartesian.set_index(keys, drop=True, append=False, inplace=False, verify_integrity=False)

	Set the DataFrame index (row labels) using one or more existing
columns. By default yields a new object.

The description is taken from the pandas project.

	Parameters:	
	keys (column label or list of column labels / arrays) –

	drop (boolean, default True) – Delete columns to be used as the new index

	append (boolean, default False) – Whether to append columns to existing index

	inplace (boolean, default False) – Modify the DataFrame in place (do not create a new object)

	verify_integrity (boolean, default False) – Check the new index for duplicates. Otherwise defer the check until
necessary. Setting to False will improve the performance of this
method

Examples

>>> indexed_df = df.set_index(['A', 'B'])
>>> indexed_df2 = df.set_index(['A', [0, 1, 2, 0, 1, 2]])
>>> indexed_df3 = df.set_index([[0, 1, 2, 0, 1, 2]])

	Returns:	Cartesian

	Return type:	Cartesian

 append

append

	
Cartesian.append(other, ignore_index=False, verify_integrity=False)

	Append rows of other to the end of this frame, returning a new object.

Columns not in this frame are added as new columns.
The description is taken from the pandas project.

	Parameters:	
	other (DataFrame or Series/dict-like object, or list of these) – The data to append.

	ignore_index (boolean, default False) – If True, do not use the index labels.

	verify_integrity (boolean, default False) – If True, raise ValueError on creating index with duplicates.

	Returns:	appended

	Return type:	Cartesian

Notes

If a list of dict/series is passed and the keys are all contained in
the DataFrame’s index, the order of the columns in the resulting
DataFrame will be unchanged.

See also

	pandas.concat()

	General function to concatenate DataFrame, Series or Panel objects

Examples

>>> df = pd.DataFrame([[1, 2], [3, 4]], columns=list('AB'))
>>> df
 A B
0 1 2
1 3 4
>>> df2 = pd.DataFrame([[5, 6], [7, 8]], columns=list('AB'))
>>> df.append(df2)
 A B
0 1 2
1 3 4
0 5 6
1 7 8

With ignore_index set to True:

>>> df.append(df2, ignore_index=True)
 A B
0 1 2
1 3 4
2 5 6
3 7 8

 insert

insert

	
Cartesian.insert(loc, column, value, allow_duplicates=False, inplace=False)

	Insert column into DataFrame at specified location.

If allow_duplicates is False, raises Exception if column
is already contained in the DataFrame.

	Parameters:	
	loc (int) – Must have 0 <= loc <= len(columns)

	column (object) –

	value (int, Series, or array-like) –

	inplace (bool) –

 sort_values

sort_values

	
Cartesian.sort_values(by, axis=0, ascending=True, inplace=False, kind='quicksort', na_position='last')

	Sort by the values along either axis

The description is taken from the pandas project.

	Parameters:	
	by (string name or list of names which refer to the axis items) –

	axis (index, columns to direct sorting) –

	ascending (bool or list of bool) – Sort ascending vs. descending. Specify list for multiple sort
orders. If this is a list of bools, must match the length of
the by.

	inplace (bool) – if True, perform operation in-place

	kind ({quicksort, mergesort, heapsort}) – Choice of sorting algorithm. See also ndarray.np.sort for more
information. mergesort is the only stable algorithm. For
DataFrames, this option is only applied when sorting on a single
column or label.

	na_position ({'first', 'last'}) – first puts NaNs at the beginning, last puts NaNs at the end

	Returns:	sorted_obj

	Return type:	Cartesian

 write

write

	
Cartesian.write(outputfile, sort_index=True)

	Writes the Cartesian into a file.

If sort_index is true, the frame is sorted by the index before writing.

Note

Since it permamently writes a file, this function
is strictly speaking not sideeffect free.
The frame to be written is of course not changed.

	Parameters:	
	outputfile (str) –

	sort_index (bool) –

	Returns:	None

	Return type:	None

 read_xyz

read_xyz

	
classmethod Cartesian.read_xyz(inputfile, pythonic_index=False, get_bonds=True)

	Reads a xyz file.

	Parameters:	
	inputfile (str) –

	pythonic_index (bool) –

	Returns:	

	Return type:	Cartesian

 read_molden

read_molden

	
classmethod Cartesian.read_molden(inputfile, pythonic_index=False, get_bonds=True)

	Reads a molden file.

	Parameters:	
	inputfile (str) –

	pythonic_index (bool) –

	Returns:	A list containing Cartesian is returned.

	Return type:	list

 _divide_et_impera

_divide_et_impera

	
Cartesian._divide_et_impera(maximum_edge_length=25.0, difference_edge=6.0)

	Returns a molecule split into cuboids.

If your algorithm scales with [image: O(n^2)].
You can use this function as a preprocessing step to make it

scaling with [image: O(n\log(n))].

	Parameters:	
	maximum_edge_length (float) – Maximum length of one edge

	a cuboid. difference_edge (of) –

	Returns:	
	A dictionary mapping from a 3 tuple of integers

	to a 2 tuple of sets. The 3 tuple gives the integer
numbered coordinates of the cuboids. The first set
contains the indices of atoms lying in the cube with
a maximum edge length of maximum_edge_length. They
are pairwise disjunct and are referred to as small
cuboids. The second set contains the indices of atoms
lying in the cube with maximum_edge_length +
difference_edge. They are a bit larger than the small
cuboids and overlap with difference_edge / 2.

	Return type:	dict

 _preserve_bonds

_preserve_bonds

	
Cartesian._preserve_bonds(sliced_cartesian)

	Is called after cutting geometric shapes.

	If you want to change the rules how bonds are preserved, when

	applying e.g. Cartesian.cutsphere() this is the
function you have to modify.

	It is recommended to inherit from the Cartesian class to

	tailor it for your project, instead of modifying the
source code of ChemCoord.

	Parameters:	sliced_frame (Cartesian) –

	Returns:	

	Return type:	Cartesian

 _get_buildlist

_get_buildlist

	
Cartesian._get_buildlist(fixed_buildlist=None)

	Create a buildlist for a Zmatrix.

	Parameters:	fixed_buildlist (np.array) – It is possible to provide the
beginning of the buildlist. The rest is “figured” out
automatically.

	Returns:	buildlist

	Return type:	np.array

 _clean_dihedral

_clean_dihedral

	
Cartesian._clean_dihedral(buildlist_to_check)

	Reindexes the dihedral defining atom if colinear.

	Parameters:	buildlist (np.array) –

	Returns:	modified_buildlist

	Return type:	np.array

 _build_zmat

_build_zmat

	
Cartesian._build_zmat(buildlist)

	Creates the zmatrix from a buildlist.

	Parameters:	buildlist (np.array) –

	Returns:	A new instance of Zmat.

	Return type:	Zmat

 read_xyz

read_xyz

	
chemcoord.xyz_functions.read_xyz(inputfile, pythonic_index=False, get_bonds=True)

	Reads a xyz file.

Note

This function calls in the background Cartesian.read_xyz().
If you inherited from Cartesian to tailor it for your project,
you have to use this method as a constructor.
Otherwise you can choose.

	Parameters:	
	inputfile (str) –

	pythonic_index (bool) –

	Returns:	

	Return type:	Cartesian

 read_molden

read_molden

	
chemcoord.xyz_functions.read_molden(inputfile, pythonic_index=False, get_bonds=True)

	Reads a molden file.

	Parameters:	
	inputfile (str) –

	pythonic_index (bool) –

	Returns:	A list containing Cartesian is returned.

	Return type:	list

 write_molden

write_molden

	
chemcoord.xyz_functions.write_molden(cartesian_list, outputfile)

	Writes a list of Cartesians into a molden file.

Note

Since it permamently writes a file, this function is
strictly speaking not sideeffect free.
The frame to be written is of course not changed.

	Parameters:	
	cartesian_list (list) –

	outputfile (str) –

	Returns:	

	Return type:	None

 Utilities for euclidean geometry

Utilities for euclidean geometry

	rotation_matrix(axis,

 rotation_matrix

rotation_matrix

	
chemcoord.utilities.rotation_matrix(axis, angle)

	Returns the rotation matrix.

This function returns a matrix for the counterclockwise rotation
around the given axis.
The Input angle is in radians.

	Parameters:	
	axis (vector) –

	angle (float) –

	Returns:	

	Return type:	Rotation matrix (np.array)

 give_angle

give_angle

	
chemcoord.utilities.give_angle(Vector1, Vector2)

	Calculate the angle in degrees between two vectors.
The vectors do not have to be normalized.

 orthormalize

orthormalize

	
chemcoord.utilities.orthormalize(basis)

	Orthonormalizes a given basis.

This functions returns a right handed orthormalized basis.
Since only the first two vectors in the basis are used, it does not matter
if you give two or three vectors.

Right handed means, that:

	np.cross(e1, e2) = e3

	np.cross(e2, e3) = e1

	np.cross(e3, e1) = e2

	Parameters:	basis (np.array) – An array of shape = (3,2) or (3,3)

	Returns:	A right handed orthonormalized basis.

	Return type:	new_basis (np.array)

 normalize

normalize

	
chemcoord.utilities.normalize(vector)

	Normalizes a vector

 distance

distance

	
chemcoord.utilities.distance(vector1, vector2)

	Calculates the distance between vector1 and vector2

 kabsch

kabsch

	
chemcoord.utilities.kabsch(P, Q)

	The optimal rotation matrix U is calculated and then used to rotate matrix
P unto matrix Q so the minimum root-mean-square deviation (RMSD) can be
calculated.

Using the Kabsch algorithm with two sets of paired point P and Q,
centered around the center-of-mass.
Each vector set is represented as an NxD matrix, where D is the
the dimension of the space.

The algorithm works in three steps:
- a translation of P and Q
- the computation of a covariance matrix C
- computation of the optimal rotation matrix U

http://en.wikipedia.org/wiki/Kabsch_algorithm

Parameters:
P – (N, number of points)x(D, dimension) matrix
Q – (N, number of points)x(D, dimension) matrix

Returns:
U – Rotation matrix

 Functions for internal coordinates

Functions for internal coordinates

	Zmat(init)
	The main class for dealing with internal coordinates.

 Zmat

Zmat

	
class chemcoord.zmat_functions.Zmat(init)

	The main class for dealing with internal coordinates.

Chemical Methods

	build_list()
	Return the buildlist which is necessary to create this Zmat

	change_numbering([new_index,

 build_list

build_list

	
Zmat.build_list()

	Return the buildlist which is necessary to create this Zmat

	Parameters:	None –

	Returns:	Buildlist

	Return type:	np.array

 change_numbering

change_numbering

	
Zmat.change_numbering(new_index=None, inplace=False)

	Change numbering to a new index.

	Changes the numbering of index and all dependent numbering

	(bond_with...) to a new_index.

	The user has to make sure that the new_index consists of distinct

	elements.

	Parameters:	
	new_index (list) – If None the new_index is taken from 1 to the

	of atoms. (number) –

	Returns:	Reindexed version of the zmatrix.

	Return type:	Zmat

 add_data

add_data

	
Zmat.add_data(list_of_columns=None, inplace=False)

	Adds a column with the requested data.

	If you want to see for example the mass, the colormap used in

	jmol and the block of the element, just use:

['mass', 'jmol_color', 'block']

	The underlying pd.DataFrame can be accessed with

	constants.elements.

To see all available keys use constants.elements.info().

	The data comes from the module `mendeleev

	<http://mendeleev.readthedocs.org/en/latest/>`_ written
by Lukasz Mentel.

Please note that I added three columns to the mendeleev data:

['atomic_radius_cc', 'atomic_radius_gv', 'gv_color',
 'valency']

	The atomic_radius_cc is used by default by this module

	for determining bond lengths.

	The three others are taken from the MOLCAS grid viewer written

	by Valera Veryazov.

	Parameters:	
	list_of_columns (str) – You can pass also just one value.
E.g. 'mass' is equivalent to ['mass']. If
list_of_columns is None all available data
is returned.

	inplace (bool) –

	Returns:	

	Return type:	Cartesian

 read_zmat

read_zmat

	
classmethod Zmat.read_zmat(inputfile, implicit_index=True)

	Reads a zmat file.

Lines beginning with # are ignored.

	Parameters:	
	inputfile (str) –

	implicit_index (bool) – If this option is true the first column

	to be the element symbols for the atoms. (has) – The row number is used to determine the index.

	Returns:	

	Return type:	Zmat

 to_xyz

to_xyz

	
Zmat.to_xyz(SN_NeRF=False)

	Transforms to cartesian space.

	Parameters:	SN_NeRF (bool) – Use the Self-Normalizing Natural
Extension Reference Frame algorithm [1]. In theory this
means 30 % less floating point operations, but since
this module is in python, floating point operations are
not the rate determining step. Nevertheless it is a more
elegant method than the “intuitive” conversion. Could make
a difference in the future when certain functions will be
implemented in Fortran.

	Returns:	Reindexed version of the zmatrix.

	Return type:	Cartesian

	[1]	Parsons J, Holmes JB, Rojas JM, Tsai J, Strauss CE (2005).
Practical conversion from torsion space to Cartesian space for in
silico protein synthesis.
J Comput Chem. 26(10) , 1063-8.
doi:10.1002/jcc.20237 [http://dx.doi.org/10.1002/jcc.20237]

 write

write

	
Zmat.write(outputfile, implicit_index=True)

	Writes the zmatrix into a file.

Note

Since it permamently writes a file, this function is
strictly speaking not sideeffect free.
The frame to be written is of course not changed.

	Parameters:	
	outputfile (str) –

	implicit_index (bool) – If implicit_index is set, the zmat indexing
is changed to range(1, number_atoms+1). Besides the index is
omitted while writing which means, that the index is given
implicitly by the row number.

	Returns:	None

	Return type:	None

 __init__

__init__

	
Zmat.__init__(init)

	How to initialize a Zmat instance.

	Parameters:	init (pd.DataFrame) – A Dataframe with at least the columns
['atom', 'bond_with', 'bond', 'angle_with', 'angle',
'dihedral_with', 'dihedral'].
Where 'atom' is a string for the elementsymbol.

	Returns:	A new zmat instance.

	Return type:	Zmat

 index

index

	
Zmat.index

	Returns the index.

Assigning a value to it changes the index.

 columns

columns

	
Zmat.columns

	Returns the columns.

Assigning a value to it changes the columns.

 replace

replace

	
Zmat.replace(to_replace=None, value=None, inplace=False, limit=None, regex=False, method='pad', axis=None)

	Replace values given in ‘to_replace’ with ‘value’.

The description is taken from the pandas project.

	Parameters:	
	to_replace (str, regex, list, dict, Series, numeric, or None) –
	str or regex:

	str: string exactly matching to_replace will be replaced
with value

	regex: regexs matching to_replace will be replaced with
value

	list of str, regex, or numeric:

	First, if to_replace and value are both lists, they
must be the same length.

	Second, if regex=True then all of the strings in both
lists will be interpreted as regexs otherwise they will match
directly. This doesn’t matter much for value since there
are only a few possible substitution regexes you can use.

	str and regex rules apply as above.

	dict:

	Nested dictionaries, e.g., {‘a’: {‘b’: nan}}, are read as
follows: look in column ‘a’ for the value ‘b’ and replace it
with nan. You can nest regular expressions as well. Note that
column names (the top-level dictionary keys in a nested
dictionary) cannot be regular expressions.

	Keys map to column names and values map to substitution
values. You can treat this as a special case of passing two
lists except that you are specifying the column to search in.

	None:

	This means that the regex argument must be a string,
compiled regular expression, or list, dict, ndarray or Series
of such elements. If value is also None then this
must be a nested dictionary or Series.

See the examples section for examples of each of these.

	value (scalar, dict, list, str, regex, default None) – Value to use to fill holes (e.g. 0), alternately a dict of values
specifying which value to use for each column (columns not in the
dict will not be filled). Regular expressions, strings and lists or
dicts of such objects are also allowed.

	inplace (boolean, default False) – If True, in place. Note: this will modify any
other views on this object (e.g. a column form a DataFrame).
Returns the caller if this is True.

	limit (int, default None) – Maximum size gap to forward or backward fill

	regex (bool or same types as to_replace, default False) – Whether to interpret to_replace and/or value as regular
expressions. If this is True then to_replace must be a
string. Otherwise, to_replace must be None because this
parameter will be interpreted as a regular expression or a list,
dict, or array of regular expressions.

	method (string, optional, {'pad', 'ffill', 'bfill'}) – The method to use when for replacement, when to_replace is a
list.

	Returns:	filled

	Return type:	Cartesian

	Raises:	
	AssertionError – * If regex is not a bool and to_replace is not None.

	
	TypeError – * If to_replace is a dict and value is not a list,

	dict, ndarray, or Series

	If to_replace is None and regex is not compilable into a
regular expression or is a list, dict, ndarray, or Series.

	
	ValueError – * If to_replace and value are list s or ndarray s, but

	they are not the same length.

Notes

	Regex substitution is performed under the hood with re.sub. The
rules for substitution for re.sub are the same.

	Regular expressions will only substitute on strings, meaning you
cannot provide, for example, a regular expression matching floating
point numbers and expect the columns in your frame that have a
numeric dtype to be matched. However, if those floating point numbers
are strings, then you can do this.

	This method has a lot of options. You are encouraged to experiment
and play with this method to gain intuition about how it works.

 sort_index

sort_index

	
Zmat.sort_index(axis=0, level=None, ascending=True, inplace=False, kind='quicksort', na_position='last', sort_remaining=True, by=None)

	Sort object by labels (along an axis)

The description is taken from the pandas project.

	Parameters:	
	axis (index, columns to direct sorting) –

	level (int or level name or list of ints or list of level names) – if not None, sort on values in specified index level(s)

	ascending (boolean, default True) – Sort ascending vs. descending

	inplace (bool) – if True, perform operation in-place

	kind ({quicksort, mergesort, heapsort}) – Choice of sorting algorithm. See also ndarray.np.sort for more
information. mergesort is the only stable algorithm. For
DataFrames, this option is only applied when sorting on a single
column or label.

	na_position ({'first', 'last'}) – first puts NaNs at the beginning, last puts NaNs at the end

	sort_remaining (bool) – if true and sorting by level and index is multilevel, sort by other
levels too (in order) after sorting by specified level

	Returns:	sorted_obj

	Return type:	Cartesian

 set_index

set_index

	
Zmat.set_index(keys, drop=True, append=False, inplace=False, verify_integrity=False)

	Set the DataFrame index (row labels) using one or more existing
columns. By default yields a new object.

The description is taken from the pandas project.

	Parameters:	
	keys (column label or list of column labels / arrays) –

	drop (boolean, default True) – Delete columns to be used as the new index

	append (boolean, default False) – Whether to append columns to existing index

	inplace (boolean, default False) – Modify the DataFrame in place (do not create a new object)

	verify_integrity (boolean, default False) – Check the new index for duplicates. Otherwise defer the check until
necessary. Setting to False will improve the performance of this
method

Examples

>>> indexed_df = df.set_index(['A', 'B'])
>>> indexed_df2 = df.set_index(['A', [0, 1, 2, 0, 1, 2]])
>>> indexed_df3 = df.set_index([[0, 1, 2, 0, 1, 2]])

	Returns:	Cartesian

	Return type:	Cartesian

 append

append

	
Zmat.append(other, ignore_index=False, verify_integrity=False)

	Append rows of other to the end of this frame, returning a new object.

Columns not in this frame are added as new columns.
The description is taken from the pandas project.

	Parameters:	
	other (DataFrame or Series/dict-like object, or list of these) – The data to append.

	ignore_index (boolean, default False) – If True, do not use the index labels.

	verify_integrity (boolean, default False) – If True, raise ValueError on creating index with duplicates.

	Returns:	appended

	Return type:	Cartesian

Notes

If a list of dict/series is passed and the keys are all contained in
the DataFrame’s index, the order of the columns in the resulting
DataFrame will be unchanged.

See also

	pandas.concat()

	General function to concatenate DataFrame, Series or Panel objects

Examples

>>> df = pd.DataFrame([[1, 2], [3, 4]], columns=list('AB'))
>>> df
 A B
0 1 2
1 3 4
>>> df2 = pd.DataFrame([[5, 6], [7, 8]], columns=list('AB'))
>>> df.append(df2)
 A B
0 1 2
1 3 4
0 5 6
1 7 8

With ignore_index set to True:

>>> df.append(df2, ignore_index=True)
 A B
0 1 2
1 3 4
2 5 6
3 7 8

 insert

insert

	
Zmat.insert(loc, column, value, allow_duplicates=False, inplace=False)

	Insert column into DataFrame at specified location.

If allow_duplicates is False, raises Exception if column
is already contained in the DataFrame.

	Parameters:	
	loc (int) – Must have 0 <= loc <= len(columns)

	column (object) –

	value (int, Series, or array-like) –

	inplace (bool) –

 sort_values

sort_values

	
Zmat.sort_values(by, axis=0, ascending=True, inplace=False, kind='quicksort', na_position='last')

	Sort by the values along either axis

The description is taken from the pandas project.

	Parameters:	
	by (string name or list of names which refer to the axis items) –

	axis (index, columns to direct sorting) –

	ascending (bool or list of bool) – Sort ascending vs. descending. Specify list for multiple sort
orders. If this is a list of bools, must match the length of
the by.

	inplace (bool) – if True, perform operation in-place

	kind ({quicksort, mergesort, heapsort}) – Choice of sorting algorithm. See also ndarray.np.sort for more
information. mergesort is the only stable algorithm. For
DataFrames, this option is only applied when sorting on a single
column or label.

	na_position ({'first', 'last'}) – first puts NaNs at the beginning, last puts NaNs at the end

	Returns:	sorted_obj

	Return type:	Cartesian

 References

References

	[1]	Parsons J, Holmes JB, Rojas JM, Tsai J, Strauss CE (2005).
Practical conversion from torsion space to Cartesian space for in silico protein synthesis.
J Comput Chem. 26(10), 1063-8.
doi:10.1002/jcc.20237 [http://dx.doi.org/10.1002/jcc.20237]

	[2]	
	
	Mentel (2014). mendeleev, Available at: https://bitbucket.org/lukaszmentel/mendeleev

	[3]	Goran Kovacevic, Veryazov, Valera (2015).
Luscus: molecular viewer and editor for MOLCAS.
Journal of Cheminformatics. 7(1), 1-10
doi:10.1186/s13321-015-0060-z [http://dx.doi.org/10.1186/s13321-015-0060-z]

	[4]	Kabsch W. (1976).
A solution for the best rotation to relate two sets of vectors.
Acta Crystallographica, A32:922-923.
doi:10.1107/S0567739476001873 [http://dx.doi.org/10.1107/S0567739476001873]

	[5]	Jimmy Charnley Kromann ; Casper Steinmann ; larsbratholm ; aandi ; Kasper Primdal Lauritzen (2016).
GitHub: Calculate RMSD for two XYZ structures.
http://github.com/charnley/rmsd, doi:10.5281/zenodo.46697 [http://dx.doi.org/10.5281/zenodo.46697]

 Bugreports and development.

Bugreports and development.

If you request new feautures or want to report bugs please open an issue on the github project page [https://github.com/mcocdawc/chemcoord/issues].

If you want to contribute in the development, feel free to contact me as well over the github project page [https://github.com/mcocdawc/chemcoord/issues].

Previous Contribution

	Main Work: Oskar Weser

	Python2 compatibility: Keld Lundgaard

 License

License

GNU LESSER GENERAL PUBLIC LICENSE
Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

This version of the GNU Lesser General Public License incorporates
the terms and conditions of version 3 of the GNU General Public
License, supplemented by the additional permissions listed below.

	Additional Definitions.

As used herein, “this License” refers to version 3 of the GNU Lesser
General Public License, and the “GNU GPL” refers to version 3 of the GNU
General Public License.

“The Library” refers to a covered work governed by this License,
other than an Application or a Combined Work as defined below.

An “Application” is any work that makes use of an interface provided
by the Library, but which is not otherwise based on the Library.
Defining a subclass of a class defined by the Library is deemed a mode
of using an interface provided by the Library.

A “Combined Work” is a work produced by combining or linking an
Application with the Library. The particular version of the Library
with which the Combined Work was made is also called the “Linked
Version”.

The “Minimal Corresponding Source” for a Combined Work means the
Corresponding Source for the Combined Work, excluding any source code
for portions of the Combined Work that, considered in isolation, are
based on the Application, and not on the Linked Version.

The “Corresponding Application Code” for a Combined Work means the
object code and/or source code for the Application, including any data
and utility programs needed for reproducing the Combined Work from the
Application, but excluding the System Libraries of the Combined Work.

	Exception to Section 3 of the GNU GPL.

You may convey a covered work under sections 3 and 4 of this License
without being bound by section 3 of the GNU GPL.

	Conveying Modified Versions.

If you modify a copy of the Library, and, in your modifications, a
facility refers to a function or data to be supplied by an Application
that uses the facility (other than as an argument passed when the
facility is invoked), then you may convey a copy of the modified
version:

a) under this License, provided that you make a good faith effort to
ensure that, in the event an Application does not supply the
function or data, the facility still operates, and performs
whatever part of its purpose remains meaningful, or

b) under the GNU GPL, with none of the additional permissions of
this License applicable to that copy.

	Object Code Incorporating Material from Library Header Files.

The object code form of an Application may incorporate material from
a header file that is part of the Library. You may convey such object
code under terms of your choice, provided that, if the incorporated
material is not limited to numerical parameters, data structure
layouts and accessors, or small macros, inline functions and templates
(ten or fewer lines in length), you do both of the following:

a) Give prominent notice with each copy of the object code that the
Library is used in it and that the Library and its use are
covered by this License.

	Accompany the object code with a copy of the GNU GPL and this license document.

	Combined Works.

You may convey a Combined Work under terms of your choice that,
taken together, effectively do not restrict modification of the
portions of the Library contained in the Combined Work and reverse
engineering for debugging such modifications, if you also do each of
the following:

a) Give prominent notice with each copy of the Combined Work that
the Library is used in it and that the Library and its use are
covered by this License.

	Accompany the Combined Work with a copy of the GNU GPL and this license document.

c) For a Combined Work that displays copyright notices during
execution, include the copyright notice for the Library among
these notices, as well as a reference directing the user to the
copies of the GNU GPL and this license document.

	Do one of the following:

	Convey the Minimal Corresponding Source under the terms of this
License, and the Corresponding Application Code in a form
suitable for, and under terms that permit, the user to
recombine or relink the Application with a modified version of
the Linked Version to produce a modified Combined Work, in the
manner specified by section 6 of the GNU GPL for conveying
Corresponding Source.

1) Use a suitable shared library mechanism for linking with the
Library. A suitable mechanism is one that (a) uses at run time
a copy of the Library already present on the user’s computer
system, and (b) will operate properly with a modified version
of the Library that is interface-compatible with the Linked
Version.

e) Provide Installation Information, but only if you would otherwise
be required to provide such information under section 6 of the
GNU GPL, and only to the extent that such information is
necessary to install and execute a modified version of the
Combined Work produced by recombining or relinking the
Application with a modified version of the Linked Version. (If
you use option 4d0, the Installation Information must accompany
the Minimal Corresponding Source and Corresponding Application
Code. If you use option 4d1, you must provide the Installation
Information in the manner specified by section 6 of the GNU GPL
for conveying Corresponding Source.)

	Combined Libraries.

You may place library facilities that are a work based on the
Library side by side in a single library together with other library
facilities that are not Applications and are not covered by this
License, and convey such a combined library under terms of your
choice, if you do both of the following:

a) Accompany the combined library with a copy of the same work based
on the Library, uncombined with any other library facilities,
conveyed under the terms of this License.

b) Give prominent notice with the combined library that part of it
is a work based on the Library, and explaining where to find the
accompanying uncombined form of the same work.

	Revised Versions of the GNU Lesser General Public License.

The Free Software Foundation may publish revised and/or new versions
of the GNU Lesser General Public License from time to time. Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the
Library as you received it specifies that a certain numbered version
of the GNU Lesser General Public License “or any later version”
applies to it, you have the option of following the terms and
conditions either of that published version or of any later version
published by the Free Software Foundation. If the Library as you
received it does not specify a version number of the GNU Lesser
General Public License, you may choose any version of the GNU Lesser
General Public License ever published by the Free Software Foundation.

If the Library as you received it specifies that a proxy can decide
whether future versions of the GNU Lesser General Public License shall
apply, that proxy’s public statement of acceptance of any version is
permanent authorization for you to choose that version for the
Library.

 Index

Index

 _
 | A
 | B
 | C
 | D
 | F
 | G
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | W
 | Z

_

 	
 	__init__() (chemcoord.xyz_functions.Cartesian method)

 	(chemcoord.zmat_functions.Zmat method)

 	_build_zmat() (chemcoord.xyz_functions.Cartesian method)

 	
 	_clean_dihedral() (chemcoord.xyz_functions.Cartesian method)

 	_divide_et_impera() (chemcoord.xyz_functions.Cartesian method)

 	_get_buildlist() (chemcoord.xyz_functions.Cartesian method)

 	_preserve_bonds() (chemcoord.xyz_functions.Cartesian method)

A

 	
 	add_data() (chemcoord.xyz_functions.Cartesian method)

 	(chemcoord.zmat_functions.Zmat method)

 	align() (chemcoord.xyz_functions.Cartesian method)

 	
 	angle_degrees() (chemcoord.xyz_functions.Cartesian method)

 	append() (chemcoord.xyz_functions.Cartesian method)

 	(chemcoord.zmat_functions.Zmat method)

B

 	
 	barycenter() (chemcoord.xyz_functions.Cartesian method)

 	basistransform() (chemcoord.xyz_functions.Cartesian method)

 	
 	bond_lengths() (chemcoord.xyz_functions.Cartesian method)

 	build_list() (chemcoord.zmat_functions.Zmat method)

C

 	
 	Cartesian (class in chemcoord.xyz_functions)

 	change_numbering() (chemcoord.xyz_functions.Cartesian method)

 	(chemcoord.zmat_functions.Zmat method)

 	columns (chemcoord.xyz_functions.Cartesian attribute)

 	(chemcoord.zmat_functions.Zmat attribute)

 	
 	connected_to() (chemcoord.xyz_functions.Cartesian method)

 	cutcuboid() (chemcoord.xyz_functions.Cartesian method)

 	cutsphere() (chemcoord.xyz_functions.Cartesian method)

D

 	
 	dihedral_degrees() (chemcoord.xyz_functions.Cartesian method)

 	
 	distance() (in module chemcoord.utilities)

 	distance_to() (chemcoord.xyz_functions.Cartesian method)

F

 	
 	fragmentate() (chemcoord.xyz_functions.Cartesian method)

G

 	
 	get_bonds() (chemcoord.xyz_functions.Cartesian method)

 	
 	get_fragment() (chemcoord.xyz_functions.Cartesian method)

 	give_angle() (in module chemcoord.utilities)

I

 	
 	index (chemcoord.xyz_functions.Cartesian attribute)

 	(chemcoord.zmat_functions.Zmat attribute)

 	
 	inertia() (chemcoord.xyz_functions.Cartesian method)

 	insert() (chemcoord.xyz_functions.Cartesian method)

 	(chemcoord.zmat_functions.Zmat method)

K

 	
 	kabsch() (in module chemcoord.utilities)

L

 	
 	location() (chemcoord.xyz_functions.Cartesian method)

M

 	
 	make_similar() (chemcoord.xyz_functions.Cartesian method)

 	
 	move() (chemcoord.xyz_functions.Cartesian method)

 	move_to() (chemcoord.xyz_functions.Cartesian method)

N

 	
 	normalize() (in module chemcoord.utilities)

O

 	
 	orthormalize() (in module chemcoord.utilities)

P

 	
 	partition_chem_env() (chemcoord.xyz_functions.Cartesian method)

R

 	
 	read_molden() (chemcoord.xyz_functions.Cartesian class method)

 	(in module chemcoord.xyz_functions)

 	read_xyz() (chemcoord.xyz_functions.Cartesian class method)

 	(in module chemcoord.xyz_functions)

 	
 	read_zmat() (chemcoord.zmat_functions.Zmat class method)

 	replace() (chemcoord.xyz_functions.Cartesian method)

 	(chemcoord.zmat_functions.Zmat method)

 	rotation_matrix() (in module chemcoord.utilities)

S

 	
 	set_index() (chemcoord.xyz_functions.Cartesian method)

 	(chemcoord.zmat_functions.Zmat method)

 	sort_index() (chemcoord.xyz_functions.Cartesian method)

 	(chemcoord.zmat_functions.Zmat method)

 	
 	sort_values() (chemcoord.xyz_functions.Cartesian method)

 	(chemcoord.zmat_functions.Zmat method)

T

 	
 	to_xyz() (chemcoord.zmat_functions.Zmat method)

 	to_zmat() (chemcoord.xyz_functions.Cartesian method)

 	
 	topologic_center() (chemcoord.xyz_functions.Cartesian method)

 	total_mass() (chemcoord.xyz_functions.Cartesian method)

W

 	
 	write() (chemcoord.xyz_functions.Cartesian method)

 	(chemcoord.zmat_functions.Zmat method)

 	
 	write_molden() (in module chemcoord.xyz_functions)

Z

 	
 	Zmat (class in chemcoord.zmat_functions)

_static/up-pressed.png

_static/down.png

_static/up.png

_static/ajax-loader.gif

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		Welcome to ChemCoord's documentation!

 		Installation Guide

 		Unix

 		Windows

 		Introduction and General Structure

 		What you need to know

 		Internal representation of Data

 		Main classes of this module

 		Tutorial

 		Documentation

 		Cartesian coordinates

 		Cartesian

 		read_xyz

 		read_molden

 		write_molden

 		Utilities for euclidean geometry

 		rotation_matrix

 		give_angle

 		orthormalize

 		normalize

 		distance

 		kabsch

 		Functions for internal coordinates

 		Zmat

 		References

 		Bugreports and developm