

Welcome to ChemCoord’s documentation!

Features

	You can use it as a python module. [https://xkcd.com/353/]

	It reliably converts from Cartesian space (xyz-files) to internal coordinates (zmat-files)
without introducing dummy atoms. Even in the case of linearity.

	The created zmatrix is not only a transformation to internal coordinates, it is a “chemical” zmatrix.
By chemical I mean, that e.g. distances are along bonds or dihedrals are defined as you draw them in chemical textbooks.

	It derived from my own work and I heavily use it during the day.
So all functions are tested and tailored around the workflow in theoretical chemistry.

	The classes are safe to inherit from and you can easily costumize it for the needs of your project.

Contents

	Installation Guide
	Unix

	Windows

	Introduction and General Structure
	What you need to know

	Internal representation of Data

	Main classes of this module

	Tutorial

	Documentation
	Cartesian coordinates

	Internal coordinates

	Configuration of settings

	Exceptions

	References

	Bugreports and Development

	Previous Contribution

	License

Installation Guide

You need a working python (both python2 and 3) installation together with some standard modules.
You can use for example the anaconda3 installer [https://www.continuum.io/downloads/].

The advantage of the anaconda3 installer is that you get a lot of additional modules and programs,
that make it really easy to work with python.
For example Ipython [http://ipython.org/] and the jupyter notebooks [http://jupyter.org/].
I highly recommend to use those.

Unix

Just type in your terminal:

pip install chemcoord

This should also resolve all dependencies automatically.

Windows

I tested neither installation nor running the module on windows.
As far as I know it should work as well if you use the pip manager.
If you get it installed and running, please report it on the Github page.

Introduction and General Structure

What you need to know

I assume that you know python [https://docs.python.org/3/tutorial/index.html].

You can use chemcoord without knowing Pandas, but it gives you a great advantage.
If you invest 1h for their tutorial [http://pandas.pydata.org/pandas-docs/stable/tutorials.html]
you will greatly increase your productivity in scientific data analysis.

It also helps to know about numpy [https://docs.scipy.org/doc/numpy-dev/user/quickstart.html].

Internal representation of Data

This module uses pandas DataFrames to represent cartesian and internal coordinates.
(I will refer to them in lab slang as xyz and zmat)

The xyz_frame has at least four columns ['atom', 'x', 'y', 'z'].

The zmat_frame has at least seven columns ['atom', 'b', 'bond', 'a', 'angle', 'd', 'dihedral'].

Since they are normal pandas DataFrames you can do everything with them as long as you respect this structure.
This means it is possible to append e.g. a column for the masses of each atom.
Besides you can use all the capabilities of pandas.

If you want for example to get only the oxygen atoms of a xyz_frame you can use boolean slicing:

xyz_frame[xyz_frame['atom'] == 'O']

Main classes of this module

The “working horses” of this module are the Cartesian and the Zmat class.
They have the methods to operate on their coordinates.

The methods of an instance of the Cartesian class usually return new instances of Cartesian.
Besides all methods are sideeffect free unless otherwise stated.

Let’s assume you have a molecule1 and you want to cut a sphere around the origin which gives you molecule2:

molecule2 = molecule1.cut_sphere()

If you try this, you will see that:

	molecule2 is a Cartesian instance.

	molecule1 remains unchanged.

Tutorial

Just follow the link to the example notebooks.

	Cartesian [http://nbviewer.jupyter.org/github/mcocdawc/chemcoord/blob/master/Tutorial/Cartesian.ipynb]

	Zmat [http://nbviewer.jupyter.org/github/mcocdawc/chemcoord/blob/master/Tutorial/Zmat.ipynb]

	Transformation [http://nbviewer.jupyter.org/github/mcocdawc/chemcoord/blob/master/Tutorial/Transformation.ipynb]

	Advanced customisation [http://nbviewer.jupyter.org/github/mcocdawc/chemcoord/blob/master/Tutorial/Advanced_customisation.ipynb]

If you want to have an interactive session, just download the following
zip file [https://minhaskamal.github.io/DownGit/#/home?url=https:%2F%2Fgithub.com%2Fmcocdawc%2Fchemcoord%2Ftree%2Fmaster%2FTutorial],
which contains all notebooks and coordinates.

Documentation

Contents:

	Cartesian coordinates

	Internal coordinates

	Configuration of settings

	Exceptions

Cartesian coordinates

Cartesian

The Cartesian class which is used to represent
a molecule in cartesian coordinates.

	Cartesian([frame,

 chemcoord.Cartesian

chemcoord.Cartesian

	
class chemcoord.Cartesian(frame=None, atoms=None, coords=None, index=None, metadata=None, _metadata=None)

	The main class for dealing with cartesian Coordinates.

Mathematical Operations:

It supports binary operators in the logic of the scipy stack, but you need
python3.x for using the matrix multiplication operator @.

The general rule is that mathematical operations using the binary operators
+ - * / @ and the unary operators + - abs
are only applied to the ['x', 'y', 'z'] columns.

Addition/Subtraction/Multiplication/Division:
If you add a scalar to a Cartesian it is added elementwise onto the
['x', 'y', 'z'] columns.
If you add a 3-dimensional vector, list, tuple... the first element of this
vector is added elementwise to the 'x' column of the
Cartesian instance and so on.
The last possibility is to add a matrix with
shape=(len(Cartesian), 3) which is again added elementwise.
The same rules are true for subtraction, division and multiplication.

Matrixmultiplication:
Only leftsided multiplication with a matrix of shape=(n, 3),
where n is a natural number, is supported.
The usual usecase is for example
np.diag([1, 1, -1]) @ cartesian_instance
to mirror on the x-y plane.

Indexing:

The indexing behaves like Indexing and Selecting data in
Pandas [http://pandas.pydata.org/pandas-docs/stable/indexing.html].
You can slice with loc(),
iloc()
and Cartesian[...].
The only question is about the return type.
If the information in the columns is enough to draw a molecule,
an instance of the own class (e.g. Cartesian)
is returned.
If the information in the columns is not enough to draw a molecule,
there are two cases to consider:

	A Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series] instance is returned for one dimensional
slices.

	A DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame] instance is returned in all other cases.

This means that:

molecule.loc[:, ['atom', 'x', 'y', 'z']] returns a
Cartesian.

molecule.loc[:, ['atom', 'x']] returns a
pandas.DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame].

molecule.loc[:, 'atom'] returns a
pandas.Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series].

Comparison:

Comparison for equality with == is supported.
It behaves exactly like the equality comparison of DataFrames in pandas.
Amongst other things this means that the index has to be the same and
the comparison of floating point numbers is exact and not numerical.
For this reason you rarely want to use ==.
Usually the question is “are two given molecules chemically the same”.
For this comparison you have to use the function allclose(), which
moves to the barycenter, aligns along the principal axes of inertia and
compares numerically.

Chemical Methods

	__init__([frame,

 chemcoord.Cartesian.__init__

chemcoord.Cartesian.__init__

	
Cartesian.__init__(frame=None, atoms=None, coords=None, index=None, metadata=None, _metadata=None)

	How to initialize a Cartesian instance.

	Parameters:	
	frame (pd.DataFrame) – A Dataframe with at least the
columns ['atom', 'x', 'y', 'z'].
Where 'atom' is a string for the elementsymbol.

	atoms (sequence) – A list of strings. (Elementsymbols)

	coords (sequence) – A n_atoms * 3 array containg the positions
of the atoms. Note that atoms and coords are mutually exclusive
to frame. Besides atoms and coords have to be both either None
or not None.

	Returns:	A new cartesian instance.

	Return type:	Cartesian

 chemcoord.Cartesian.get_bonds

chemcoord.Cartesian.get_bonds

	
Cartesian.get_bonds(self_bonding_allowed=False, offset=3, modified_properties=None, use_lookup=False, set_lookup=True, atomic_radius_data=None)

	Return a dictionary representing the bonds.

Warning

This function is not sideeffect free, since it
assigns the output to a variable self._metadata['bond_dict'] if
set_lookup is True (which is the default). This is
necessary for performance reasons.

.get_bonds() will use or not use a lookup
depending on use_lookup. Greatly increases performance if
True, but could introduce bugs in certain situations.

Just imagine a situation where the Cartesian is
changed manually. If you apply lateron a method e.g. to_zmat()
that makes use of get_bonds() the dictionary of the bonds
may not represent the actual situation anymore.

You have two possibilities to cope with this problem.
Either you just re-execute get_bonds on your specific instance,
or you change the internally_use_lookup option in the settings.
Please note that the internal use of the lookup variable
greatly improves performance.

	Parameters:	
	modified_properties (dic) – If you want to change the van der
Vaals radius of one or more specific atoms, pass a
dictionary that looks like:

modified_properties = {index1: 1.5}

For global changes use the constants module.

	offset (float) –

	use_lookup (bool) –

	set_lookup (bool) –

	self_bonding_allowed (bool) –

	atomic_radius_data (str) – Defines which column of
constants.elements is used. The default is
atomic_radius_cc and can be changed with
settings['defaults']['atomic_radius_data'].
Compare with add_data().

	Returns:	Dictionary mapping from an atom index to the set of
indices of atoms bonded to.

	Return type:	dict

 chemcoord.Cartesian.restrict_bond_dict

chemcoord.Cartesian.restrict_bond_dict

	
Cartesian.restrict_bond_dict(bond_dict)

	Restrict a bond dictionary to self.

	Parameters:	bond_dict (dict) – Look into get_bonds(),
to see examples for a bond_dict.

	Returns:	bond dictionary

 chemcoord.Cartesian.get_fragment

chemcoord.Cartesian.get_fragment

	
Cartesian.get_fragment(list_of_indextuples, give_only_index=False, use_lookup=None)

	Get the indices of the atoms in a fragment.

The list_of_indextuples contains all bondings from the
molecule to the fragment. [(1,3), (2,4)] means for example that the
fragment is connected over two bonds. The first bond is from atom 1 in
the molecule to atom 3 in the fragment. The second bond is from atom
2 in the molecule to atom 4 in the fragment.

	Parameters:	
	list_of_indextuples (list) –

	give_only_index (bool) – If True a set of indices
is returned. Otherwise a new Cartesian instance.

	use_lookup (bool) – Use a lookup variable for
get_bonds(). The default is
specified in settings['defaults']['use_lookup']

	Returns:	A set of indices or a new Cartesian instance.

 chemcoord.Cartesian.fragmentate

chemcoord.Cartesian.fragmentate

	
Cartesian.fragmentate(give_only_index=False, use_lookup=None)

	Get the indices of non bonded parts in the molecule.

	Parameters:	
	give_only_index (bool) – If True a set of indices is returned.
Otherwise a new Cartesian instance.

	use_lookup (bool) – Use a lookup variable for
get_bonds().

	use_lookup – Use a lookup variable for
get_bonds(). The default is
specified in settings['defaults']['use_lookup']

	Returns:	A list of sets of indices or new Cartesian instances.

	Return type:	list

 chemcoord.Cartesian.get_without

chemcoord.Cartesian.get_without

	
Cartesian.get_without(fragments, use_lookup=None)

	Return self without the specified fragments.

	Parameters:	
	fragments – Either a list of Cartesian or a
Cartesian.

	use_lookup (bool) – Use a lookup variable for
get_bonds(). The default is
specified in settings['defaults']['use_lookup']

	Returns:	List containing Cartesian.

	Return type:	list

 chemcoord.Cartesian.add_data

chemcoord.Cartesian.add_data

	
Cartesian.add_data(new_cols=None)

	Adds a column with the requested data.

If you want to see for example the mass, the colormap used in
jmol and the block of the element, just use:

['mass', 'jmol_color', 'block']

The underlying pd.DataFrame can be accessed with
constants.elements.
To see all available keys use constants.elements.info().

The data comes from the module mendeleev [http://mendeleev.readthedocs.org/en/latest/] written
by Lukasz Mentel.

Please note that I added three columns to the mendeleev data:

['atomic_radius_cc', 'atomic_radius_gv', 'gv_color',
 'valency']

The atomic_radius_cc is used by default by this module
for determining bond lengths.
The three others are taken from the MOLCAS grid viewer written
by Valera Veryazov.

	Parameters:	
	new_cols (str) – You can pass also just one value.
E.g. 'mass' is equivalent to ['mass']. If
new_cols is None all available data
is returned.

	inplace (bool) –

	Returns:	

	Return type:	Cartesian

 chemcoord.Cartesian.get_total_mass

chemcoord.Cartesian.get_total_mass

	
Cartesian.get_total_mass()

	Returns the total mass in g/mol.

	Parameters:	None –

	Returns:	

	Return type:	float

 chemcoord.Cartesian.get_coordination_sphere

chemcoord.Cartesian.get_coordination_sphere

	
Cartesian.get_coordination_sphere(index_of_atom, n_sphere=1, give_only_index=False, only_surface=True, exclude=None, use_lookup=None)

	Return a Cartesian of atoms in the n-th coordination sphere.

Connected means that a path along covalent bonds exists.

	Parameters:	
	index_of_atom (int) –

	give_only_index (bool) – If True a set of indices is
returned. Otherwise a new Cartesian instance.

	n_sphere (int) – Determines the number of the coordination sphere.

	only_surface (bool) – Return only the surface of the coordination
sphere.

	exclude (set) – A set of indices that should be ignored
for the path finding.

	use_lookup (bool) – Use a lookup variable for
get_bonds(). The default is
specified in settings['defaults']['use_lookup']

	Returns:	A set of indices or a new Cartesian instance.

 chemcoord.Cartesian.partition_chem_env

chemcoord.Cartesian.partition_chem_env

	
Cartesian.partition_chem_env(n_sphere=4, use_lookup=None)

	This function partitions the molecule into subsets of the
same chemical environment.

A chemical environment is specified by the number of
surrounding atoms of a certain kind around an atom with a
certain atomic number represented by a tuple of a string
and a frozenset of tuples.
The n_sphere option determines how many branches the
algorithm follows to determine the chemical environment.

Example:
A carbon atom in ethane has bonds with three hydrogen (atomic
number 1) and one carbon atom (atomic number 6).
If n_sphere=1 these are the only atoms we are
interested in and the chemical environment is:

('C', frozenset([('H', 3), ('C', 1)]))

If n_sphere=2 we follow every atom in the chemical
enviromment of n_sphere=1 to their direct neighbours.
In the case of ethane this gives:

('C', frozenset([('H', 6), ('C', 1)]))

In the special case of ethane this is the whole molecule;
in other cases you can apply this operation recursively and
stop after n_sphere or after reaching the end of
branches.

	Parameters:	
	n_sphere (int) –

	use_lookup (bool) – Use a lookup variable for
get_bonds(). The default is
specified in settings['defaults']['use_lookup']

	Returns:	The output will look like this:

{ (element_symbol, frozenset([tuples])) : set([indices]) }

A dictionary mapping from a chemical environment to
the set of indices of atoms in this environment.

	Return type:	dict

 chemcoord.Cartesian.cut_cuboid

chemcoord.Cartesian.cut_cuboid

	
Cartesian.cut_cuboid(a=20, b=None, c=None, origin=None, outside_sliced=True, preserve_bonds=False)

	Cut a cuboid specified by edge and radius.

	Parameters:	
	a (float) – Value of the a edge.

	b (float) – Value of the b edge. Takes value of a if None.

	c (float) – Value of the c edge. Takes value of a if None.

	origin (list) – Please note that you can also pass an
integer. In this case it is interpreted as the index
of the atom which is taken as origin.

	outside_sliced (bool) – Atoms outside/inside the sphere are
cut away.

	preserve_bonds (bool) – Do not cut covalent bonds.

	Returns:	

	Return type:	Cartesian

 chemcoord.Cartesian.cut_sphere

chemcoord.Cartesian.cut_sphere

	
Cartesian.cut_sphere(radius=15.0, origin=None, outside_sliced=True, preserve_bonds=False)

	Cut a sphere specified by origin and radius.

	Parameters:	
	radius (float) –

	origin (list) – Please note that you can also pass an
integer. In this case it is interpreted as the
index of the atom which is taken as origin.

	outside_sliced (bool) – Atoms outside/inside the sphere
are cut out.

	preserve_bonds (bool) – Do not cut covalent bonds.

	Returns:	

	Return type:	Cartesian

 chemcoord.Cartesian.basistransform

chemcoord.Cartesian.basistransform

	
Cartesian.basistransform(new_basis, old_basis=None, orthonormalize=True)

	Transform the frame to a new basis.

This function transforms the cartesian coordinates from an
old basis to a new one. Please note that old_basis and
new_basis are supposed to have full Rank and consist of
three linear independent vectors. If rotate_only is True,
it is asserted, that both bases are orthonormal and right
handed. Besides all involved matrices are transposed
instead of inverted.
In some applications this may require the function
xyz_functions.orthonormalize() as a previous step.

	Parameters:	
	old_basis (np.array) –

	new_basis (np.array) –

	rotate_only (bool) –

	Returns:	The transformed molecule.

	Return type:	Cartesian

 chemcoord.Cartesian.align

chemcoord.Cartesian.align

	
Cartesian.align(other, indices=None, ignore_hydrogens=False)

	Align two Cartesians.

Minimize the RMSD (root mean squared deviation) between
self and other.
Returns a tuple of copies of self and other where
both are centered around their centroid and
other is rotated unto self.
The rotation minimises the distances between the
atom pairs of same label.
Uses the Kabsch algorithm implemented within
get_kabsch_rotation()

Note

If indices is None, then len(self) == len(other)
must be true and the elements in each index have to be the same.

	Parameters:	
	other (Cartesian) –

	indices (sequence) – It is possible to specify a subset of indices
that is used for the determination of
the best rotation matrix:

[[i1, i2,...], [j1, j2,...]]

If indices is given in this form, the rotation matrix
minimises the distance between i1 and j1,
i2 and j2 and so on.

	ignore_hydrogens (bool) –

	Returns:	

	Return type:	tuple

 chemcoord.Cartesian.reindex_similar

chemcoord.Cartesian.reindex_similar

	
Cartesian.reindex_similar(other, n_sphere=4)

	Reindex other to be similarly indexed as self.

Returns a reindexed copy of other that minimizes the
distance for each atom to itself in the same chemical environemt
from self to other.
Read more about the definition of the chemical environment in
Cartesian.partition_chem_env()

Note

It is necessary to align self and other before
applying this method.
This can be done via align().

Note

It is probably necessary to improve the result using
change_numbering().

	Parameters:	
	other (Cartesian) –

	n_sphere (int) – Wrapper around the argument for
partition_chem_env().

	Returns:	Reindexed version of other

	Return type:	Cartesian

 chemcoord.Cartesian.change_numbering

chemcoord.Cartesian.change_numbering

	
Cartesian.change_numbering(rename_dict, inplace=False)

	Return the reindexed version of Cartesian.

	Parameters:	rename_dict (dict) – A dictionary mapping integers on integers.

	Returns:	A renamed copy according to the dictionary passed.

	Return type:	Cartesian

 chemcoord.Cartesian.subs

chemcoord.Cartesian.subs

	
Cartesian.subs(variable, value)

	Substitute a symbolic expression in ['x', 'y', 'z']

This is a wrapper around the substitution mechanism of
sympy [http://docs.sympy.org/latest/tutorial/basic_operations.html].
Any symbolic expression in the columns
['x', 'y', 'z'] of self will be substituted
with value.

	Parameters:	
	symb_expr (sympy expression) –

	value –

	perform_checks (bool) – If perform_checks is True,
it is asserted, that the resulting Zmatrix can be converted
to cartesian coordinates.
Dummy atoms will be inserted automatically if necessary.

	Returns:	Cartesian with substituted symbolic expressions.
If all resulting sympy expressions in a column are numbers,
the column is recasted to 64bit float.

	Return type:	Cartesian

 chemcoord.Cartesian.get_bond_lengths

chemcoord.Cartesian.get_bond_lengths

	
Cartesian.get_bond_lengths(indices)

	Return the distances between given atoms.

Calculates the distance between the atoms with
indices i and b.
The indices can be given in three ways:

	As simple list [i, b]

	As list of lists: [[i1, b1], [i2, b2]...]

	As pd.DataFrame where i is taken from the index and
b from the respective column 'b'.

	Parameters:	indices (list) –

	Returns:	Vector of angles in degrees.

	Return type:	numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]

 chemcoord.Cartesian.get_angle_degrees

chemcoord.Cartesian.get_angle_degrees

	
Cartesian.get_angle_degrees(indices)

	Return the angles between given atoms.

Calculates the angle in degrees between the atoms with
indices i, b, a.
The indices can be given in three ways:

	As simple list [i, b, a]

	As list of lists: [[i1, b1, a1], [i2, b2, a2]...]

	As pd.DataFrame where i is taken from the index and
b and a from the respective columns 'b' and 'a'.

	Parameters:	indices (list) –

	Returns:	Vector of angles in degrees.

	Return type:	numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]

 chemcoord.Cartesian.get_dihedral_degrees

chemcoord.Cartesian.get_dihedral_degrees

	
Cartesian.get_dihedral_degrees(indices, start_row=0)

	Return the dihedrals between given atoms.

Calculates the dihedral angle in degrees between the atoms with
indices i, b, a, d.
The indices can be given in three ways:

	As simple list [i, b, a, d]

	As list of lists: [[i1, b1, a1, d1], [i2, b2, a2, d2]...]

	As pandas.DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame] where i is taken from the index and
b, a and d``from the respective columns
``'b', 'a' and 'd'.

	Parameters:	indices (list) –

	Returns:	Vector of angles in degrees.

	Return type:	numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]

 chemcoord.Cartesian.get_barycenter

chemcoord.Cartesian.get_barycenter

	
Cartesian.get_barycenter()

	Return the mass weighted average location.

	Parameters:	None –

	Returns:	

	Return type:	numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]

 chemcoord.Cartesian.get_inertia

chemcoord.Cartesian.get_inertia

	
Cartesian.get_inertia()

	Calculate the inertia tensor and transforms along
rotation axes.

This function calculates the inertia tensor and returns
a 4-tuple.

The unit is amu * length-unit-of-xyz-file**2

	Parameters:	None –

	Returns:	The returned dictionary has four possible keys:transformed_Cartesian:
A Cartesian
that is transformed to the basis spanned by
the eigenvectors of the inertia tensor. The x-axis
is the axis with the lowest inertia moment, the
z-axis the one with the highest. Contains also a
column for the mass

diag_inertia_tensor:
A vector containing the ascendingly sorted inertia moments after
diagonalization.

inertia_tensor:
The inertia tensor in the old basis.

eigenvectors:
The eigenvectors of the inertia tensor in the old basis.
Since the inertia_tensor is hermitian, they are orthogonal and
are returned as an orthonormal righthanded basis.
The i-th eigenvector corresponds to the i-th eigenvalue in
diag_inertia_tensor.

	Return type:	dict

 chemcoord.Cartesian.get_centroid

chemcoord.Cartesian.get_centroid

	
Cartesian.get_centroid()

	Return the average location.

	Parameters:	None –

	Returns:	

	Return type:	numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]

 chemcoord.Cartesian.get_distance_to

chemcoord.Cartesian.get_distance_to

	
Cartesian.get_distance_to(origin=None, other_atoms=None, sort=False)

	Return a Cartesian with a column for the distance from origin.

 chemcoord.Cartesian.get_shortest_distance

chemcoord.Cartesian.get_shortest_distance

	
Cartesian.get_shortest_distance(other)

	Calculate the shortest distance between self and other

	Parameters:	Cartesian – other

	Returns:	Returns a tuple i, j, d with the following meaning:i:
The index on self that minimises the pairwise distance.

j:
The index on other that minimises the pairwise distance.

d:
The distance between self and other. (float)

	Return type:	tuple

 chemcoord.Cartesian.get_zmat

chemcoord.Cartesian.get_zmat

	
Cartesian.get_zmat(construction_table=None, use_lookup=None)

	Transform to internal coordinates.

Transforming to internal coordinates involves basically three
steps:

1. Define an order of how to build and define for each atom
the used reference atoms.

2. Check for problematic local linearity. In this algorithm an
angle with 170 < angle < 10 is assumed to be linear.
This is not the mathematical definition, but makes it safer
against “floating point noise”

3. Calculate the bond lengths, angles and dihedrals using the
references defined in step 1 and 2.

In the first two steps a so called construction_table is created.
This is basically a Zmatrix without the values for the bonds, angles
and dihedrals hence containing only the information about the used
references. ChemCoord uses a pandas.DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame] with the columns
['b', 'a', 'd']. Look into
get_construction_table() for more
information.

It is important to know, that calculating the construction table
is a very costly step since the algoritym tries to make some guesses
based on connectivity to create a “chemical” zmatrix.

If you create several zmatrices based on the same references
you can obtain the construction table of a zmatrix with
Zmat_instance.loc[:, ['b', 'a', 'd']]
If you then pass the buildlist as argument to give_zmat,
the algorithm directly starts with step 3 (which is much faster).

If a construction_table is passed into get_zmat()
the check for pathological linearity is not performed!
So if a construction_table is either manually created,
or obtained from get_construction_table()
under the option perform_checks = False, it is recommended to use
the following methods:

	correct_dihedral()

	correct_absolute_refs()

If you want to check for problematic indices in order to solve the
invalid references yourself, use the following methods:

	check_dihedral()

	check_absolute_refs()

	Parameters:	
	construction_table (pandas.DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame]) –

	use_lookup (bool) – Use a lookup variable for
get_bonds(). The default is
specified in settings['defaults']['use_lookup']

	Returns:	A new instance of Zmat.

	Return type:	Zmat

 chemcoord.Cartesian.get_construction_table

chemcoord.Cartesian.get_construction_table

	
Cartesian.get_construction_table(fragment_list=None, use_lookup=None, perform_checks=True)

	Create a construction table for a Zmatrix.

A construction table is basically a Zmatrix without the values
for the bond lengths, angles and dihedrals.
It contains the whole information about which reference atoms
are used by each atom in the Zmatrix.

This method creates a so called “chemical” construction table,
which makes use of the connectivity table in this molecule.

	Parameters:	
	fragment_list (sequence) – There are four possibilities to specify
the sequence of fragments:

1. A list of tuples is given. Each tuple contains the fragment
with its corresponding construction table in the form of:

[(frag1, c_table1), (frag2, c_table2)...]

If the construction table of a fragment is not complete,
the rest of each fragment’s
construction table is calculated automatically.

2. It is possible to omit the construction tables for some
or all fragments as in the following example:

[(frag1, c_table1), frag2, (frag3, c_table3)...]

3. If self contains more atoms than the union over all
fragments, the rest of the molecule without the fragments
is automatically prepended using
get_without():

self.get_without(fragments) + fragment_list

4. If fragment_list is None then fragmentation, etc.
is done automatically. The fragments are then sorted by
their number of atoms, in order to use the largest fragment
as reference for the other ones.

	use_lookup (bool) – Use a lookup variable for
get_bonds(). The default is
specified in settings['defaults']['use_lookup']

	perform_checks (bool) – The checks for invalid references are
performed using correct_dihedral()
and correct_absolute_refs().

	Returns:	Construction table

	Return type:	pandas.DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame]

 chemcoord.Cartesian.check_dihedral

chemcoord.Cartesian.check_dihedral

	
Cartesian.check_dihedral(construction_table)

	Checks, if the dihedral defining atom is colinear.

Checks for each index starting from the third row of the
construction_table, if the reference atoms are colinear.

	Parameters:	construction_table (pd.DataFrame) –

	Returns:	A list of problematic indices.

	Return type:	list

 chemcoord.Cartesian.correct_dihedral

chemcoord.Cartesian.correct_dihedral

	
Cartesian.correct_dihedral(construction_table, use_lookup=None)

	Reindexe the dihedral defining atom if linear reference is used.

Uses check_dihedral() to obtain the problematic
indices.

	Parameters:	
	construction_table (pd.DataFrame) –

	use_lookup (bool) – Use a lookup variable for
get_bonds(). The default is
specified in settings['defaults']['use_lookup']

	Returns:	Appropiately renamed construction table.

	Return type:	pd.DataFrame

 chemcoord.Cartesian.check_absolute_refs

chemcoord.Cartesian.check_absolute_refs

	
Cartesian.check_absolute_refs(construction_table)

	Checks first three rows of construction_table for linear references

Checks for each index from first to third row of the
construction_table, if the references are colinear.
This case has to be specially treated, because the references
are not only atoms (to fix internal degrees of freedom) but also points
in cartesian space called absolute references.
(to fix translational and rotational degrees of freedom)

	Parameters:	construction_table (pd.DataFrame) –

	Returns:	A list of problematic indices.

	Return type:	list

 chemcoord.Cartesian.correct_absolute_refs

chemcoord.Cartesian.correct_absolute_refs

	
Cartesian.correct_absolute_refs(construction_table)

	Reindexe construction_table if linear reference in first three rows
present.

Uses check_absolute_refs() to obtain the problematic
indices.

	Parameters:	construction_table (pd.DataFrame) –

	Returns:	Appropiately renamed construction table.

	Return type:	pd.DataFrame

 chemcoord.Cartesian.to_zmat

chemcoord.Cartesian.to_zmat

	
Cartesian.to_zmat(*args, **kwargs)

	Deprecated, use get_zmat()

 chemcoord.Cartesian.get_pointgroup

chemcoord.Cartesian.get_pointgroup

	
Cartesian.get_pointgroup(tolerance=0.3)

	Returns a PointGroup object for the molecule.

	Parameters:	tolerance (float) – Tolerance to generate the full set of symmetry
operations.

	Returns:	PointGroupOperations

 chemcoord.Cartesian.get_equivalent_atoms

chemcoord.Cartesian.get_equivalent_atoms

	
Cartesian.get_equivalent_atoms(tolerance=0.3)

	Returns sets of equivalent atoms with symmetry operations

	Parameters:	tolerance (float) – Tolerance to generate the full set of symmetry
operations.

	Returns:	The returned dictionary has two possible keys:eq_sets:
A dictionary of indices mapping to sets of indices,
each key maps to indices of all equivalent atoms.
The keys are guaranteed to be not equivalent.

sym_ops:
Twofold nested dictionary.
operations[i][j] gives the symmetry operation
that maps atom i unto j.

	Return type:	dict

 chemcoord.Cartesian.symmetrize

chemcoord.Cartesian.symmetrize

	
Cartesian.symmetrize(max_n=10, tolerance=0.3, epsilon=0.001)

	Returns a symmetrized molecule

The equivalent atoms obtained via
get_equivalent_atoms()
are rotated, mirrored... unto one position.
Then the average position is calculated.
The average position is rotated, mirrored... back with the inverse
of the previous symmetry operations, which gives the
symmetrized molecule.
This operation is repeated iteratively max_n times at maximum
until the difference between subsequently symmetrized structures is
smaller than epsilon.

	Parameters:	
	max_n (int) – Maximum number of iterations.

	tolerance (float) – Tolerance for detecting symmetry.
Gets passed as Argument into
PointGroupAnalyzer.

	epsilon (float) – If the elementwise absolute difference of two
subsequently symmetrized structures is smaller epsilon,
the iteration stops before max_n is reached.

	Returns:	The returned dictionary has three possible keys:

sym_mol:
A symmetrized molecule Cartesian

eq_sets:
A dictionary of indices mapping to sets of indices,
each key maps to indices of all equivalent atoms.
The keys are guaranteed to be not symmetry-equivalent.

sym_ops:
Twofold nested dictionary.
operations[i][j] gives the symmetry operation
that maps atom i unto j.

	Return type:	dict

 chemcoord.Cartesian.get_asymmetric_unit

chemcoord.Cartesian.get_asymmetric_unit

	
Cartesian.get_asymmetric_unit(eq=None)

	

 chemcoord.Cartesian.write_xyz

chemcoord.Cartesian.write_xyz

	
Cartesian.write_xyz(*args, **kwargs)

	Deprecated, use to_xyz()

 chemcoord.Cartesian.to_xyz

chemcoord.Cartesian.to_xyz

	
Cartesian.to_xyz(buf=None, sort_index=True, index=False, header=False, float_format=<built-in method format of str object>, overwrite=True)

	Write xyz-file

	Parameters:	
	buf (str) – StringIO-like, optional buffer to write to

	sort_index (bool) – If sort_index is true, the
Cartesian
is sorted by the index before writing.

	float_format (one-parameter function) – Formatter function
to apply to column’s elements if they are floats.
The result of this function must be a unicode string.

	overwrite (bool) – May overwrite existing files.

	Returns:	string (or unicode, depending on data and options)

	Return type:	formatted

 chemcoord.Cartesian.read_xyz

chemcoord.Cartesian.read_xyz

	
Cartesian.read_xyz(inputfile, start_index=0, get_bonds=True, nrows=None, engine=None)

	Read a file of coordinate information.

Reads xyz-files.

	Parameters:	
	inputfile (str) –

	start_index (int) –

	get_bonds (bool) –

	nrows (int) – Number of rows of file to read.
Note that the first two rows are implicitly excluded.

	engine (str) – Wrapper for argument of pandas.read_csv() [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html#pandas.read_csv].

	Returns:	

	Return type:	Cartesian

 chemcoord.Cartesian.view

chemcoord.Cartesian.view

	
Cartesian.view(viewer=None, use_curr_dir=False)

	View your molecule.

Note

This function writes a temporary file and opens it with
an external viewer.
If you modify your molecule afterwards you have to recall view
in order to see the changes.

	Parameters:	
	viewer (str) – The external viewer to use. If it is None,
the default as specified in cc.settings[‘defaults’][‘viewer’]
is used.

	use_curr_dir (bool) – If True, the temporary file is written to
the current diretory. Otherwise it gets written to the
OS dependendent temporary directory.

	Returns:	

	Return type:	None

 chemcoord.Cartesian.to_string

chemcoord.Cartesian.to_string

	
Cartesian.to_string(buf=None, columns=None, col_space=None, header=True, index=True, na_rep='NaN', formatters=None, float_format=None, sparsify=None, index_names=True, justify=None, line_width=None, max_rows=None, max_cols=None, show_dimensions=False)

	Render a DataFrame to a console-friendly tabular output.

Wrapper around the pandas.DataFrame.to_string() [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_string.html#pandas.DataFrame.to_string] method.

 chemcoord.Cartesian.to_latex

chemcoord.Cartesian.to_latex

	
Cartesian.to_latex(buf=None, columns=None, col_space=None, header=True, index=True, na_rep='NaN', formatters=None, float_format=None, sparsify=None, index_names=True, bold_rows=True, column_format=None, longtable=None, escape=None, encoding=None, decimal='.', multicolumn=None, multicolumn_format=None, multirow=None)

	Render a DataFrame to a tabular environment table.

You can splice this into a LaTeX document.
Requires \usepackage{booktabs}.
Wrapper around the pandas.DataFrame.to_latex() [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_latex.html#pandas.DataFrame.to_latex] method.

 chemcoord.Cartesian.get_pymatgen_molecule

chemcoord.Cartesian.get_pymatgen_molecule

	
Cartesian.get_pymatgen_molecule()

	Create a Molecule instance of the pymatgen library

Warning

The pymatgen library [http://pymatgen.org] is imported
locally in this function and will raise
an ImportError exception, if it is not installed.

	Parameters:	None –

	Returns:	

	Return type:	pymatgen.core.structure.Molecule [http://pymatgen.org/pymatgen.core.structure.html#pymatgen.core.structure.Molecule]

 chemcoord.Cartesian.from_pymatgen_molecule

chemcoord.Cartesian.from_pymatgen_molecule

	
Cartesian.from_pymatgen_molecule(molecule)

	Create an instance of the own class from a pymatgen molecule

	Parameters:	molecule (pymatgen.core.structure.Molecule [http://pymatgen.org/pymatgen.core.structure.html#pymatgen.core.structure.Molecule]) –

	Returns:	

	Return type:	Cartesian

 chemcoord.Cartesian.get_ase_atoms

chemcoord.Cartesian.get_ase_atoms

	
Cartesian.get_ase_atoms()

	Create an Atoms instance of the ase library

Warning

The ase library [https://wiki.fysik.dtu.dk/ase/]
is imported locally in this function and will raise
an ImportError exception, if it is not installed.

	Parameters:	None –

	Returns:	

	Return type:	ase.atoms.Atoms

 chemcoord.Cartesian.from_ase_atoms

chemcoord.Cartesian.from_ase_atoms

	
Cartesian.from_ase_atoms(atoms)

	Create an instance of the own class from an ase molecule

	Parameters:	molecule (ase.atoms.Atoms) –

	Returns:	

	Return type:	Cartesian

 chemcoord.Cartesian.copy

chemcoord.Cartesian.copy

	
Cartesian.copy()

	

 chemcoord.Cartesian.index

chemcoord.Cartesian.index

	
Cartesian.index

	Returns the index.

Assigning a value to it changes the index.

 chemcoord.Cartesian.columns

chemcoord.Cartesian.columns

	
Cartesian.columns

	Returns the columns.

Assigning a value to it changes the columns.

 chemcoord.Cartesian.replace

chemcoord.Cartesian.replace

	
Cartesian.replace(to_replace=None, value=None, inplace=False, limit=None, regex=False, method='pad', axis=None)

	Replace values given in ‘to_replace’ with ‘value’.

Wrapper around the pandas.DataFrame.replace() [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.replace.html#pandas.DataFrame.replace] method.

 chemcoord.Cartesian.sort_index

chemcoord.Cartesian.sort_index

	
Cartesian.sort_index(axis=0, level=None, ascending=True, inplace=False, kind='quicksort', na_position='last', sort_remaining=True, by=None)

	Sort object by labels (along an axis)

Wrapper around the pandas.DataFrame.sort_index() [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.sort_index.html#pandas.DataFrame.sort_index] method.

 chemcoord.Cartesian.set_index

chemcoord.Cartesian.set_index

	
Cartesian.set_index(keys, drop=True, append=False, inplace=False, verify_integrity=False)

	Set the DataFrame index (row labels) using one or more existing
columns.

Wrapper around the pandas.DataFrame.set_index() [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.set_index.html#pandas.DataFrame.set_index] method.

 chemcoord.Cartesian.append

chemcoord.Cartesian.append

	
Cartesian.append(other, ignore_index=False)

	Append rows of other to the end of this frame, returning a new object.

Wrapper around the pandas.DataFrame.append() [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.append.html#pandas.DataFrame.append] method.

	Parameters:	
	other (Cartesian) –

	ignore_index (sequence, bool, int) – If it is a boolean, it
behaves like in the description of
pandas.DataFrame.append() [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.append.html#pandas.DataFrame.append].
If it is a sequence, it becomes the new index.
If it is an integer,
range(ignore_index, ignore_index + len(new))
becomes the new index.

	Returns:	

	Return type:	Cartesian

 chemcoord.Cartesian.insert

chemcoord.Cartesian.insert

	
Cartesian.insert(loc, column, value, allow_duplicates=False, inplace=False)

	Insert column into molecule at specified location.

Wrapper around the pandas.DataFrame.insert() [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.insert.html#pandas.DataFrame.insert] method.

 chemcoord.Cartesian.sort_values

chemcoord.Cartesian.sort_values

	
Cartesian.sort_values(by, axis=0, ascending=True, inplace=False, kind='quicksort', na_position='last')

	Sort by the values along either axis

Wrapper around the pandas.DataFrame.sort_values() [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.sort_values.html#pandas.DataFrame.sort_values] method.

 chemcoord.Cartesian.loc

chemcoord.Cartesian.loc

	
Cartesian.loc

	Label based indexing

The indexing behaves like Indexing and Selecting data in
Pandas [http://pandas.pydata.org/pandas-docs/stable/indexing.html].
You can slice with loc(),
iloc()
and Cartesian[...].
The only question is about the return type.
If the information in the columns is enough to draw a molecule,
an instance of the own class (e.g. Cartesian)
is returned.
If the information in the columns is not enough to draw a molecule,
there are two cases to consider:

	A Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series] instance is
returned for one dimensional slices.

	A DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame] instance is returned
in all other cases.

This means that:

molecule.loc[:, ['atom', 'x', 'y', 'z']] returns a
Cartesian.

molecule.loc[:, ['atom', 'x']] returns a
pandas.DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame].

molecule.loc[:, 'atom'] returns a
pandas.Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series].

 chemcoord.Cartesian.iloc

chemcoord.Cartesian.iloc

	
Cartesian.iloc

	Label based indexing

The indexing behaves like Indexing and Selecting data in
Pandas [http://pandas.pydata.org/pandas-docs/stable/indexing.html].
You can slice with loc(),
iloc()
and Cartesian[...].
The only question is about the return type.
If the information in the columns is enough to draw a molecule,
an instance of the own class (e.g. Cartesian)
is returned.
If the information in the columns is not enough to draw a molecule,
there are two cases to consider:

	A Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series] instance is
returned for one dimensional slices.

	A DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame] instance is returned
in all other cases.

This means that:

molecule.loc[:, ['atom', 'x', 'y', 'z']] returns a
Cartesian.

molecule.loc[:, ['atom', 'x']] returns a
pandas.DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame].

molecule.loc[:, 'atom'] returns a
pandas.Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series].

 chemcoord.Cartesian._divide_et_impera

chemcoord.Cartesian._divide_et_impera

	
Cartesian._divide_et_impera(n_atoms_per_set=500, offset=3)

	

 chemcoord.Cartesian._preserve_bonds

chemcoord.Cartesian._preserve_bonds

	
Cartesian._preserve_bonds(sliced_cartesian, use_lookup=None)

	Is called after cutting geometric shapes.

	If you want to change the rules how bonds are preserved, when

	applying e.g. Cartesian.cut_sphere() this is the
function you have to modify.

	It is recommended to inherit from the Cartesian class to

	tailor it for your project, instead of modifying the
source code of ChemCoord.

	Parameters:	
	sliced_frame (Cartesian) –

	use_lookup (bool) – Use a lookup variable for
get_bonds(). The default is
specified in settings['defaults']['use_lookup']

	Returns:	

	Return type:	Cartesian

 chemcoord.xyz_functions.isclose

chemcoord.xyz_functions.isclose

	
chemcoord.xyz_functions.isclose(a, b, align=False, rtol=1e-05, atol=1e-08)

	Compare two molecules for numerical equality.

	Parameters:	
	a (Cartesian) –

	b (Cartesian) –

	align (bool) – a and b are
prealigned along their principal axes of inertia and moved to their
barycenters before comparing.

	rtol (float) – Relative tolerance for the numerical equality comparison
look into numpy.isclose() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.isclose.html#numpy.isclose] for further explanation.

	atol (float) – Relative tolerance for the numerical equality comparison
look into numpy.isclose() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.isclose.html#numpy.isclose] for further explanation.

	Returns:	Boolean array.

	Return type:	numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]

 chemcoord.xyz_functions.allclose

chemcoord.xyz_functions.allclose

	
chemcoord.xyz_functions.allclose(a, b, align=False, rtol=1e-05, atol=1e-08)

	Compare two molecules for numerical equality.

	Parameters:	
	a (Cartesian) –

	b (Cartesian) –

	align (bool) – a and b are
prealigned along their principal axes of inertia and moved to their
barycenters before comparing.

	rtol (float) – Relative tolerance for the numerical equality comparison
look into numpy.allclose() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.allclose.html#numpy.allclose] for further explanation.

	atol (float) – Relative tolerance for the numerical equality comparison
look into numpy.allclose() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.allclose.html#numpy.allclose] for further explanation.

	Returns:	

	Return type:	bool

 chemcoord.xyz_functions.concat

chemcoord.xyz_functions.concat

	
chemcoord.xyz_functions.concat(cartesians, ignore_index=False, keys=None)

	Join list of cartesians into one molecule.

Wrapper around the pandas.concat() [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.concat.html#pandas.concat] function.
Default values are the same as in the pandas function except for
verify_integrity which is set to true in case of this library.

	Parameters:	
	ignore_index (sequence, bool, int) – If it is a boolean, it
behaves like in the description of
pandas.DataFrame.append() [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.append.html#pandas.DataFrame.append].
If it is a sequence, it becomes the new index.
If it is an integer,
range(ignore_index, ignore_index + len(new))
becomes the new index.

	keys (sequence) – If multiple levels passed, should contain tuples.
Construct hierarchical index using the passed keys as
the outermost level

	Returns:	

	Return type:	Cartesian

 chemcoord.xyz_functions.write_molden

chemcoord.xyz_functions.write_molden

	
chemcoord.xyz_functions.write_molden(*args, **kwargs)

	Deprecated, use to_molden()

 chemcoord.xyz_functions.to_molden

chemcoord.xyz_functions.to_molden

	
chemcoord.xyz_functions.to_molden(cartesian_list, buf=None, sort_index=True, overwrite=True, float_format=<built-in method format of str object>)

	Write a list of Cartesians into a molden file.

Note

Since it permamently writes a file, this function
is strictly speaking not sideeffect free.
The list to be written is of course not changed.

	Parameters:	
	cartesian_list (list) –

	buf (str) – StringIO-like, optional buffer to write to

	sort_index (bool) – If sort_index is true, the Cartesian
is sorted by the index before writing.

	overwrite (bool) – May overwrite existing files.

	float_format (one-parameter function) – Formatter function
to apply to column’s elements if they are floats.
The result of this function must be a unicode string.

	Returns:	string (or unicode, depending on data and options)

	Return type:	formatted

 chemcoord.xyz_functions.read_molden

chemcoord.xyz_functions.read_molden

	
chemcoord.xyz_functions.read_molden(inputfile, start_index=0, get_bonds=True)

	Read a molden file.

	Parameters:	
	inputfile (str) –

	start_index (int) –

	Returns:	A list containing Cartesian is returned.

	Return type:	list

 chemcoord.xyz_functions.view

chemcoord.xyz_functions.view

	
chemcoord.xyz_functions.view(molecule, viewer='gv.exe', use_curr_dir=False)

	View your molecule or list of molecules.

Note

This function writes a temporary file and opens it with
an external viewer.
If you modify your molecule afterwards you have to recall view
in order to see the changes.

	Parameters:	
	molecule – Can be a cartesian, or a list of cartesians.

	viewer (str) – The external viewer to use. The default is
specified in settings.viewer

	use_curr_dir (bool) – If True, the temporary file is written to
the current diretory. Otherwise it gets written to the
OS dependendent temporary directory.

	Returns:	

	Return type:	None

 chemcoord.xyz_functions.dot

chemcoord.xyz_functions.dot

	
chemcoord.xyz_functions.dot(A, B)

	Matrix multiplication between A and B

This function is equivalent to A @ B, which is unfortunately
not possible under python 2.x.

	Parameters:	
	A (sequence) –

	B (sequence) –

	Returns:	

	Return type:	sequence

 chemcoord.PointGroupOperations

chemcoord.PointGroupOperations

	
class chemcoord.PointGroupOperations(sch_symbol, operations, tolerance=0.1)

	Defines a point group as sequence of symmetry operations.

	Parameters:	
	sch_symbol (str) – Schoenflies symbol of the point group.

	operations (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Initial set of symmetry operations. It is
sufficient to provide only just enough operations to generate
the full set of symmetries.

	tolerance (float) – Tolerance to generate the full set of symmetry
operations.

 chemcoord.AsymmetricUnitCartesian

chemcoord.AsymmetricUnitCartesian

	
class chemcoord.AsymmetricUnitCartesian(frame=None, atoms=None, coords=None, index=None, metadata=None, _metadata=None)

	Manipulate cartesian coordinates while preserving the point group.

This class has all the methods of a Cartesian, with
one additional get_cartesian() method
and contains only one member of each symmetry equivalence class.

	get_cartesian()
	Return a Cartesian where all members of a symmetry equivalence class are inserted back in.

 chemcoord.AsymmetricUnitCartesian.get_cartesian

chemcoord.AsymmetricUnitCartesian.get_cartesian

	
AsymmetricUnitCartesian.get_cartesian()

	Return a Cartesian where all
members of a symmetry equivalence class are inserted back in.

	Parameters:	None –

	Returns:	A new cartesian instance.

	Return type:	Cartesian

 Internal coordinates

Internal coordinates

Zmat

The Zmat class which is used to represent
a molecule in non redundant, internal coordinates.

	Zmat(frame[,

 chemcoord.Zmat

chemcoord.Zmat

	
class chemcoord.Zmat(frame, metadata=None, _metadata=None)

	The main class for dealing with internal Coordinates.

Rotational direction:

Chemcoord uses the
IUPAC definition [https://goldbook.iupac.org/html/T/T06406.html].
Note that this does not include the automatic choosing of the
canonical equivalence class representation.
An angle of -30° could be represented by 270°.
Use iupacify() to choose also the
IUPAC conform angle representation.

Mathematical Operations:

The general rule is that mathematical operations using the binary operators
+ - * / and the unary operators + - abs
are only applied to the ['bond', 'angle', 'dihedral'] columns.

Addition/Subtraction/Multiplication/Division:
The most common case is to add another Zmat instance.
In this case it is tested, if the used references are the same.
Afterwards the addition in the ['bond', 'angle', 'dihedral'] columns
is performed.
If you add a scalar to a Zmat it is added elementwise onto the
['bond', 'angle', 'dihedral'] columns.
If you add a 3-dimensional vector, list, tuple... the first element of this
vector is added elementwise to the 'bond' column of the
Zmat instance and so on.
The third possibility is to add a matrix with
shape=(len(Zmat), 3) which is again added elementwise.
The same rules are true for subtraction, division and multiplication.

Indexing:

The indexing behaves like Indexing and Selecting data in
Pandas [http://pandas.pydata.org/pandas-docs/stable/indexing.html].
You can slice with loc(),
iloc(), and Zmat[...].
The only question is about the return type.
If the information in the columns is enough to draw a molecule,
an instance of the own class (e.g. Zmat)
is returned.
If the information in the columns is enough to draw a molecule,
an instance of the own class (e.g. Zmat)
is returned.
If the information in the columns is not enough to draw a molecule,
there are two cases to consider:

	A Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series] instance is returned for one dimensional
slices.

	A DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame] instance is returned in all other cases.

This means that:

molecule.loc[:, ['atom', 'b', 'bond', 'a', 'angle', 'd', 'dihedral']]
returns a Zmat.

molecule.loc[:, ['atom', 'bond']] returns a
pandas.DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame].

molecule.loc[:, 'atom'] returns a
pandas.Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series].

Comparison:

Comparison for equality with == is supported.
It behaves exactly like the equality comparison of DataFrames in pandas.
Amongst other things this means that the index has to be the same and
the comparison of floating point numbers is exact and not numerical.

Chemical Methods

	__init__(frame[,

 chemcoord.Zmat.__init__

chemcoord.Zmat.__init__

	
Zmat.__init__(frame, metadata=None, _metadata=None)

	How to initialize a Zmat instance.

	Parameters:	
	init (pd.DataFrame) – A Dataframe with at least the columns
['atom', 'b', 'bond', 'a', 'angle',
'd', 'dihedral'].
Where 'atom' is a string for the elementsymbol.

	order_of_definition (list like) – Specify in which order
the Zmatrix is defined. If None it just uses
self.index.

	Returns:	A new zmat instance.

	Return type:	Zmat

 chemcoord.Zmat.add_data

chemcoord.Zmat.add_data

	
Zmat.add_data(new_cols=None)

	Adds a column with the requested data.

If you want to see for example the mass, the colormap used in
jmol and the block of the element, just use:

['mass', 'jmol_color', 'block']

The underlying pd.DataFrame can be accessed with
constants.elements.
To see all available keys use constants.elements.info().

The data comes from the module mendeleev [http://mendeleev.readthedocs.org/en/latest/] written
by Lukasz Mentel.

Please note that I added three columns to the mendeleev data:

['atomic_radius_cc', 'atomic_radius_gv', 'gv_color',
 'valency']

The atomic_radius_cc is used by default by this module
for determining bond lengths.
The three others are taken from the MOLCAS grid viewer written
by Valera Veryazov.

	Parameters:	
	new_cols (str) – You can pass also just one value.
E.g. 'mass' is equivalent to ['mass']. If
new_cols is None all available data
is returned.

	inplace (bool) –

	Returns:	

	Return type:	Cartesian

 chemcoord.Zmat.change_numbering

chemcoord.Zmat.change_numbering

	
Zmat.change_numbering(new_index=None)

	Change numbering to a new index.

	Changes the numbering of index and all dependent numbering

	(bond_with...) to a new_index.

	The user has to make sure that the new_index consists of distinct

	elements.

	Parameters:	new_index (list) – If None the new_index is taken from 1 to the
number of atoms.

	Returns:	Reindexed version of the zmatrix.

	Return type:	Zmat

 chemcoord.Zmat.has_same_sumformula

chemcoord.Zmat.has_same_sumformula

	
Zmat.has_same_sumformula(other)

	Determines if other has the same sumformula

	Parameters:	other (molecule) –

	Returns:	

	Return type:	bool

 chemcoord.Zmat.get_cartesian

chemcoord.Zmat.get_cartesian

	
Zmat.get_cartesian()

	Return the molecule in cartesian coordinates.

Raises an InvalidReference exception,
if the reference of the i-th atom is undefined.

	Parameters:	None –

	Returns:	Reindexed version of the zmatrix.

	Return type:	Cartesian

 chemcoord.Zmat.to_xyz

chemcoord.Zmat.to_xyz

	
Zmat.to_xyz(*args, **kwargs)

	Deprecated, use get_cartesian()

 chemcoord.Zmat.get_total_mass

chemcoord.Zmat.get_total_mass

	
Zmat.get_total_mass()

	Returns the total mass in g/mol.

	Parameters:	None –

	Returns:	

	Return type:	float

 chemcoord.Zmat.subs

chemcoord.Zmat.subs

	
Zmat.subs(symb_expr, value, perform_checks=True)

	Substitute a symbolic expression in ['bond', 'angle', 'dihedral']

This is a wrapper around the substitution mechanism of
sympy [http://docs.sympy.org/latest/tutorial/basic_operations.html].
Any symbolic expression in the columns
['bond', 'angle', 'dihedral'] of self will be substituted
with value.

	Parameters:	
	symb_expr (sympy expression) –

	value –

	perform_checks (bool) – If perform_checks is True,
it is asserted, that the resulting Zmatrix can be converted
to cartesian coordinates.
Dummy atoms will be inserted automatically if necessary.

	Returns:	Zmatrix with substituted symbolic expressions.
If all resulting sympy expressions in a column are numbers,
the column is recasted to 64bit float.

	Return type:	Zmat

 chemcoord.Zmat.iupacify

chemcoord.Zmat.iupacify

	
Zmat.iupacify()

	Give the IUPAC conform representation.

Mathematically speaking the angles in a zmatrix are
representations of an equivalence class.
We will denote an equivalence relation with \(\sim\)
and use \(\alpha\) for an angle and \(\delta\) for a dihedral
angle. Then the following equations hold true.

\[\begin{split}(\alpha, \delta) &\sim (-\alpha, \delta + \pi) \\
\alpha &\sim \alpha \mod 2\pi \\
\delta &\sim \delta \mod 2\pi\end{split}\]

IUPAC [https://goldbook.iupac.org/html/T/T06406.html] defines
a designated representation of these equivalence classes, by asserting:

\[\begin{split}0 \leq &\alpha \leq \pi \\
-\pi \leq &\delta \leq \pi\end{split}\]

	Parameters:	None –

	Returns:	Zmatrix with accordingly changed angles and dihedrals.

	Return type:	Zmat

 chemcoord.Zmat.minimize_dihedrals

chemcoord.Zmat.minimize_dihedrals

	
Zmat.minimize_dihedrals()

	Give a representation of the dihedral with minimized absolute value.

Mathematically speaking the angles in a zmatrix are
representations of an equivalence class.
We will denote an equivalence relation with \(\sim\)
and use \(\alpha\) for an angle and \(\delta\) for a dihedral
angle. Then the following equations hold true.

\[\begin{split}(\alpha, \delta) &\sim (-\alpha, \delta + \pi) \\
\alpha &\sim \alpha \mod 2\pi \\
\delta &\sim \delta \mod 2\pi\end{split}\]

This function asserts:

\[-\pi \leq \delta \leq \pi\]

The main application of this function is the construction of
a transforming movement from zmat1 to zmat2.
This is under the assumption that zmat1 and zmat2 are the same
molecules (regarding their topology) and have the same
construction table (get_construction_table()):

with cc.TestOperators(False):
 D = zm2 - zm1
 zmats1 = [zm1 + D * i / n for i in range(n)]
 zmats2 = [zm1 + D.minimize_dihedrals() * i / n for i in range(n)]

The movement described by zmats1 might be too large,
because going from \(5^\circ\) to \(355^\circ\) is
\(350^\circ\) in this case and not \(-10^\circ\) as
in zmats2 which is the desired \(\Delta\) in most cases.

	Parameters:	None –

	Returns:	Zmatrix with accordingly changed angles and dihedrals.

	Return type:	Zmat

 chemcoord.Zmat.loc

chemcoord.Zmat.loc

	
Zmat.loc

	Label based indexing for obtaining elements.

In the case of obtaining elements, the indexing behaves like
Indexing and Selecting data in
Pandas [http://pandas.pydata.org/pandas-docs/stable/indexing.html].

For assigning elements it is necessary to make a explicit decision
between safe and unsafe assignments.
The differences are explained in the stub page of
safe_loc().

 chemcoord.Zmat.safe_loc

chemcoord.Zmat.safe_loc

	
Zmat.safe_loc

	Label based indexing for obtaining elements and assigning
values safely.

In the case of obtaining elements, the indexing behaves like
Indexing and Selecting data in
Pandas [http://pandas.pydata.org/pandas-docs/stable/indexing.html].

 chemcoord.Zmat.unsafe_loc

chemcoord.Zmat.unsafe_loc

	
Zmat.unsafe_loc

	Label based indexing for obtaining elements
and assigning values unsafely.

In the case of obtaining elements, the indexing behaves like
Indexing and Selecting data in
Pandas [http://pandas.pydata.org/pandas-docs/stable/indexing.html].

For assigning elements it is necessary to make a explicit decision
between safe and unsafe assignments.
The differences are explained in the stub page of
safe_loc().

 chemcoord.Zmat.iloc

chemcoord.Zmat.iloc

	
Zmat.iloc

	Integer position based indexing for obtaining elements.

In the case of obtaining elements, the indexing behaves like
Indexing and Selecting data in
Pandas [http://pandas.pydata.org/pandas-docs/stable/indexing.html].

For assigning elements it is necessary to make a explicit decision
between safe and unsafe assignments.
The differences are explained in the stub page of
safe_loc().

 chemcoord.Zmat.safe_iloc

chemcoord.Zmat.safe_iloc

	
Zmat.safe_iloc

	Integer position based indexing for obtaining elements
and assigning values safely.

In the case of obtaining elements, the indexing behaves like
Indexing and Selecting data in
Pandas [http://pandas.pydata.org/pandas-docs/stable/indexing.html].

For assigning elements it is necessary to make a explicit decision
between safe and unsafe assignments.
The differences are explained in the stub page of
safe_loc().

 chemcoord.Zmat.unsafe_iloc

chemcoord.Zmat.unsafe_iloc

	
Zmat.unsafe_iloc

	Integer position based indexing for obtaining elements
and assigning values unsafely.

In the case of obtaining elements, the indexing behaves like
Indexing and Selecting data in
Pandas [http://pandas.pydata.org/pandas-docs/stable/indexing.html].

For assigning elements it is necessary to make a explicit decision
between safe and unsafe assignments.
The differences are explained in the stub page of
safe_loc().

 chemcoord.Zmat.copy

chemcoord.Zmat.copy

	
Zmat.copy()

	

 chemcoord.Zmat.index

chemcoord.Zmat.index

	
Zmat.index

	Returns the index.

Wrapper around the pandas.DataFrame.index() property.

 chemcoord.Zmat.columns

chemcoord.Zmat.columns

	
Zmat.columns

	Returns the columns.

Wrapper around the pandas.DataFrame.columns() property.

 chemcoord.Zmat.sort_index

chemcoord.Zmat.sort_index

	
Zmat.sort_index(axis=0, level=None, ascending=True, inplace=False, kind='quicksort', na_position='last', sort_remaining=True, by=None)

	Sort object by labels (along an axis)

Wrapper around the pandas.DataFrame.sort_index() [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.sort_index.html#pandas.DataFrame.sort_index] method.

 chemcoord.Zmat.insert

chemcoord.Zmat.insert

	
Zmat.insert(loc, column, value, allow_duplicates=False, inplace=False)

	Insert column into molecule at specified location.

Wrapper around the pandas.DataFrame.insert() [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.insert.html#pandas.DataFrame.insert] method.

 chemcoord.Zmat.sort_values

chemcoord.Zmat.sort_values

	
Zmat.sort_values(by, axis=0, ascending=True, kind='quicksort', na_position='last')

	Sort by the values along either axis

Wrapper around the pandas.DataFrame.sort_values() [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.sort_values.html#pandas.DataFrame.sort_values] method.

 chemcoord.Zmat.to_zmat

chemcoord.Zmat.to_zmat

	
Zmat.to_zmat(buf=None, upper_triangle=True, implicit_index=True, float_format=<built-in method format of str object>, overwrite=True, header=False)

	Write zmat-file

	Parameters:	
	buf (str) – StringIO-like, optional buffer to write to

	implicit_index (bool) – If implicit_index is set, the zmat indexing
is changed to range(1, len(self) + 1).
Using change_numbering()
Besides the index is omitted while writing which means,
that the index is given
implicitly by the row number.

	float_format (one-parameter function) – Formatter function
to apply to column’s elements if they are floats.
The result of this function must be a unicode string.

	overwrite (bool) – May overwrite existing files.

	Returns:	string (or unicode, depending on data and options)

	Return type:	formatted

 chemcoord.Zmat.write

chemcoord.Zmat.write

	
Zmat.write(*args, **kwargs)

	Deprecated, use to_zmat()

 chemcoord.Zmat.read_zmat

chemcoord.Zmat.read_zmat

	
Zmat.read_zmat(inputfile, implicit_index=True)

	Reads a zmat file.

Lines beginning with # are ignored.

	Parameters:	
	inputfile (str) –

	implicit_index (bool) – If this option is true the first column

	to be the element symbols for the atoms. (has) – The row number is used to determine the index.

	Returns:	

	Return type:	Zmat

 chemcoord.Zmat.to_string

chemcoord.Zmat.to_string

	
Zmat.to_string(buf=None, format_abs_ref_as='string', upper_triangle=True, header=True, index=True, **kwargs)

	Render a DataFrame to a console-friendly tabular output.

Wrapper around the pandas.DataFrame.to_string() [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_string.html#pandas.DataFrame.to_string] method.

 chemcoord.Zmat.to_latex

chemcoord.Zmat.to_latex

	
Zmat.to_latex(buf=None, upper_triangle=True, **kwargs)

	Render a DataFrame to a tabular environment table.

You can splice this into a LaTeX document.
Requires \usepackage{booktabs}.
Wrapper around the pandas.DataFrame.to_latex() [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_latex.html#pandas.DataFrame.to_latex] method.

 chemcoord.Zmat.columns

chemcoord.Zmat.columns

	
Zmat.columns

	Returns the columns.

Wrapper around the pandas.DataFrame.columns() property.

 chemcoord.Zmat.index

chemcoord.Zmat.index

	
Zmat.index

	Returns the index.

Wrapper around the pandas.DataFrame.index() property.

 chemcoord.Zmat.shape

chemcoord.Zmat.shape

	
Zmat.shape

	Returns the shape.

Wrapper around the pandas.DataFrame.shape() property.

 chemcoord.Zmat.dtypes

chemcoord.Zmat.dtypes

	
Zmat.dtypes

	Returns the dtypes.

Wrapper around the pandas.DataFrame.dtypes() property.

 chemcoord.DummyManipulation

chemcoord.DummyManipulation

	
class chemcoord.DummyManipulation(dummy_manipulation_allowed, cls=None)

	Contextmanager that controls the behaviour of
safe_loc() and
safe_iloc().

In the following examples it is assumed, that using the assignment with
safe_loc() would lead to an invalid reference.
Then there are two possible usecases:

with DummyManipulation(zmat, True):
 zmat.safe_loc[...] = ...
 # This inserts required dummy atoms and removes them,
 # if they are not needed anymore.
 # Removes only dummy atoms, that were automatically inserted.

with DummyManipulation(zmat, False):
 zmat.safe_loc[...] = ...
 # This raises an exception
 # :class:`~chemcoord.exceptions.InvalidReference`.
 # which can be handled appropiately.
 # The zmat instance is unmodified, if an exception was raised.

	
__init__(dummy_manipulation_allowed, cls=None)

	

 Configuration of settings

Configuration of settings

The current settings of chemcoord can be seen with cc.settings.
This is a dictionary that can be changed in place.
If it is necessary to change these settings permamently there is
the possibility to write a configuration file of the current settings,
that is read automatically while importing the module.
The configuration file is in the INI format and
can be changed with any text editor.

The possible settings and their defaults are:

['defaults']

	['atomic_radius_data'] = 'atomic_radius_cc'

	Determines which atomic radius is used for calculating if atoms are bonded

	['use_lookup_internally'] = True

	Look into get_bonds() for an explanation

	['viewer'] = 'gv.exe'

	Which one is the default viewer used in chemcoord.Cartesian.view()
and chemcoord.xyz_functions.view().

	write_configuration_file([filepath,

 chemcoord.configuration.write_configuration_file

chemcoord.configuration.write_configuration_file

	
chemcoord.configuration.write_configuration_file(filepath='/home/docs/.chemcoordrc', overwrite=False)

	Create a configuration file.

Writes the current state of settings into a configuration file.

Note

Since a file is permamently written, this function
is strictly speaking not sideeffect free.

	Parameters:	
	filepath (str) – Where to write the file.
The default is under both UNIX and Windows ~/.chemcoordrc.

	overwrite (bool) –

	Returns:	

	Return type:	None

 chemcoord.configuration.read_configuration_file

chemcoord.configuration.read_configuration_file

	
chemcoord.configuration.read_configuration_file(filepath='/home/docs/.chemcoordrc')

	Read the configuration file.

Note

This function changes cc.settings inplace and is
therefore not sideeffect free.

	Parameters:	filepath (str) – Where to read the file.
The default is under both UNIX and Windows ~/.chemcoordrc.

	Returns:	

	Return type:	None

 Exceptions

Exceptions

	InvalidReference([message,

 chemcoord.exceptions.InvalidReference

chemcoord.exceptions.InvalidReference

	
exception chemcoord.exceptions.InvalidReference(message=None, i=None, b=None, a=None, d=None, already_built_cartesian=None, zmat_after_assignment=None)

	Raised when the i-th atom uses an invalid reference.

May carry several attributes:

	i: Index of the atom with an invalid refernce.

	b, a, and d: Indices of reference atoms.

	already_built_cartesian: The cartesian of all atoms up to (i-1)

	zmat_after_assignment: Attached information if
it was raised from the safe assignment methods
(Zmat.safe_loc() and Zmat.unsafe_loc()).

 chemcoord.exceptions.UndefinedCoordinateSystem

chemcoord.exceptions.UndefinedCoordinateSystem

	
exception chemcoord.exceptions.UndefinedCoordinateSystem(message='')

	

 chemcoord.exceptions.PhysicalMeaning

chemcoord.exceptions.PhysicalMeaning

	
exception chemcoord.exceptions.PhysicalMeaning(message='')

	

 chemcoord.exceptions.IllegalArgumentCombination

chemcoord.exceptions.IllegalArgumentCombination

	
exception chemcoord.exceptions.IllegalArgumentCombination

	

 References

References

	[1]	Parsons J, Holmes JB, Rojas JM, Tsai J, Strauss CE (2005).
Practical conversion from torsion space to Cartesian space for in silico protein synthesis.
J Comput Chem. 26(10), 1063-8.
doi:10.1002/jcc.20237 [http://dx.doi.org/10.1002/jcc.20237]

	[2]	
	
	Mentel (2014). mendeleev, Available at: https://bitbucket.org/lukaszmentel/mendeleev

	[3]	Goran Kovacevic, Veryazov, Valera (2015).
Luscus: molecular viewer and editor for MOLCAS.
Journal of Cheminformatics. 7(1), 1-10
doi:10.1186/s13321-015-0060-z [http://dx.doi.org/10.1186/s13321-015-0060-z]

	[4]	Kabsch W. (1976).
A solution for the best rotation to relate two sets of vectors.
Acta Crystallographica, A32:922-923.
doi:10.1107/S0567739476001873 [http://dx.doi.org/10.1107/S0567739476001873]

	[5]	Jimmy Charnley Kromann ; Casper Steinmann ; larsbratholm ; aandi ; Kasper Primdal Lauritzen (2016).
GitHub: Calculate RMSD for two XYZ structures.
http://github.com/charnley/rmsd, doi:10.5281/zenodo.46697 [http://dx.doi.org/10.5281/zenodo.46697]

 Bugreports and Development

Bugreports and Development

If you request new feautures or want to report bugs please open an issue on the github project page [https://github.com/mcocdawc/chemcoord/issues].

If you want to contribute in the development, feel free to contact me as well over the github project page [https://github.com/mcocdawc/chemcoord/issues].

Previous Contribution

	Main Work: Oskar Weser

	Python2 compatibility: Keld Lundgaard

 License

License

GNU LESSER GENERAL PUBLIC LICENSE
Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

This version of the GNU Lesser General Public License incorporates
the terms and conditions of version 3 of the GNU General Public
License, supplemented by the additional permissions listed below.

	Additional Definitions.

As used herein, “this License” refers to version 3 of the GNU Lesser
General Public License, and the “GNU GPL” refers to version 3 of the GNU
General Public License.

“The Library” refers to a covered work governed by this License,
other than an Application or a Combined Work as defined below.

An “Application” is any work that makes use of an interface provided
by the Library, but which is not otherwise based on the Library.
Defining a subclass of a class defined by the Library is deemed a mode
of using an interface provided by the Library.

A “Combined Work” is a work produced by combining or linking an
Application with the Library. The particular version of the Library
with which the Combined Work was made is also called the “Linked
Version”.

The “Minimal Corresponding Source” for a Combined Work means the
Corresponding Source for the Combined Work, excluding any source code
for portions of the Combined Work that, considered in isolation, are
based on the Application, and not on the Linked Version.

The “Corresponding Application Code” for a Combined Work means the
object code and/or source code for the Application, including any data
and utility programs needed for reproducing the Combined Work from the
Application, but excluding the System Libraries of the Combined Work.

	Exception to Section 3 of the GNU GPL.

You may convey a covered work under sections 3 and 4 of this License
without being bound by section 3 of the GNU GPL.

	Conveying Modified Versions.

If you modify a copy of the Library, and, in your modifications, a
facility refers to a function or data to be supplied by an Application
that uses the facility (other than as an argument passed when the
facility is invoked), then you may convey a copy of the modified
version:

a) under this License, provided that you make a good faith effort to
ensure that, in the event an Application does not supply the
function or data, the facility still operates, and performs
whatever part of its purpose remains meaningful, or

b) under the GNU GPL, with none of the additional permissions of
this License applicable to that copy.

	Object Code Incorporating Material from Library Header Files.

The object code form of an Application may incorporate material from
a header file that is part of the Library. You may convey such object
code under terms of your choice, provided that, if the incorporated
material is not limited to numerical parameters, data structure
layouts and accessors, or small macros, inline functions and templates
(ten or fewer lines in length), you do both of the following:

a) Give prominent notice with each copy of the object code that the
Library is used in it and that the Library and its use are
covered by this License.

	Accompany the object code with a copy of the GNU GPL and this license document.

	Combined Works.

You may convey a Combined Work under terms of your choice that,
taken together, effectively do not restrict modification of the
portions of the Library contained in the Combined Work and reverse
engineering for debugging such modifications, if you also do each of
the following:

a) Give prominent notice with each copy of the Combined Work that
the Library is used in it and that the Library and its use are
covered by this License.

	Accompany the Combined Work with a copy of the GNU GPL and this license document.

c) For a Combined Work that displays copyright notices during
execution, include the copyright notice for the Library among
these notices, as well as a reference directing the user to the
copies of the GNU GPL and this license document.

	Do one of the following:

	Convey the Minimal Corresponding Source under the terms of this
License, and the Corresponding Application Code in a form
suitable for, and under terms that permit, the user to
recombine or relink the Application with a modified version of
the Linked Version to produce a modified Combined Work, in the
manner specified by section 6 of the GNU GPL for conveying
Corresponding Source.

1) Use a suitable shared library mechanism for linking with the
Library. A suitable mechanism is one that (a) uses at run time
a copy of the Library already present on the user’s computer
system, and (b) will operate properly with a modified version
of the Library that is interface-compatible with the Linked
Version.

e) Provide Installation Information, but only if you would otherwise
be required to provide such information under section 6 of the
GNU GPL, and only to the extent that such information is
necessary to install and execute a modified version of the
Combined Work produced by recombining or relinking the
Application with a modified version of the Linked Version. (If
you use option 4d0, the Installation Information must accompany
the Minimal Corresponding Source and Corresponding Application
Code. If you use option 4d1, you must provide the Installation
Information in the manner specified by section 6 of the GNU GPL
for conveying Corresponding Source.)

	Combined Libraries.

You may place library facilities that are a work based on the
Library side by side in a single library together with other library
facilities that are not Applications and are not covered by this
License, and convey such a combined library under terms of your
choice, if you do both of the following:

a) Accompany the combined library with a copy of the same work based
on the Library, uncombined with any other library facilities,
conveyed under the terms of this License.

b) Give prominent notice with the combined library that part of it
is a work based on the Library, and explaining where to find the
accompanying uncombined form of the same work.

	Revised Versions of the GNU Lesser General Public License.

The Free Software Foundation may publish revised and/or new versions
of the GNU Lesser General Public License from time to time. Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the
Library as you received it specifies that a certain numbered version
of the GNU Lesser General Public License “or any later version”
applies to it, you have the option of following the terms and
conditions either of that published version or of any later version
published by the Free Software Foundation. If the Library as you
received it does not specify a version number of the GNU Lesser
General Public License, you may choose any version of the GNU Lesser
General Public License ever published by the Free Software Foundation.

If the Library as you received it specifies that a proxy can decide
whether future versions of the GNU Lesser General Public License shall
apply, that proxy’s public statement of acceptance of any version is
permanent authorization for you to choose that version for the
Library.

 Index

Index

 _
 | A
 | B
 | C
 | D
 | F
 | G
 | H
 | I
 | L
 | M
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | Z

_

 	
 	__init__() (chemcoord.Cartesian method)

 	(chemcoord.DummyManipulation method)

 	(chemcoord.Zmat method)

 	
 	_divide_et_impera() (chemcoord.Cartesian method)

 	_preserve_bonds() (chemcoord.Cartesian method)

A

 	
 	add_data() (chemcoord.Cartesian method)

 	(chemcoord.Zmat method)

 	align() (chemcoord.Cartesian method)

 	
 	allclose() (in module chemcoord.xyz_functions)

 	append() (chemcoord.Cartesian method)

 	AsymmetricUnitCartesian (class in chemcoord)

B

 	
 	basistransform() (chemcoord.Cartesian method)

C

 	
 	Cartesian (class in chemcoord)

 	change_numbering() (chemcoord.Cartesian method)

 	(chemcoord.Zmat method)

 	check_absolute_refs() (chemcoord.Cartesian method)

 	check_dihedral() (chemcoord.Cartesian method)

 	columns (chemcoord.Cartesian attribute)

 	(chemcoord.Zmat attribute)

 	
 	concat() (in module chemcoord.xyz_functions)

 	copy() (chemcoord.Cartesian method)

 	(chemcoord.Zmat method)

 	correct_absolute_refs() (chemcoord.Cartesian method)

 	correct_dihedral() (chemcoord.Cartesian method)

 	cut_cuboid() (chemcoord.Cartes